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Obesity is a major risk factor for the 
development of type 2 diabetes. A 
dramatic illustration of the association 

between body weight and type 2 diabetes was 
provided by the ADDITION (Anglo-Danish-
Dutch Study of Intensive Treatment in People 
with Screen Detected Diabetes in Primary Care) 
study, in which 97% of individuals with screen-
detected diabetes in Cambridge were overweight 
or obese (Lauritzen et al, 2000). 

It is increasingly recognised that weight 
reduction and restoration of healthy body 
composition is possibly the most important 
therapeutic target for future interventions in the 
management of type 2 diabetes (Maggio and Pi-
Sunyer, 1997; Anderson et al, 2003). Prospective 
evidence regarding intentional weight loss 
in people with type 2 diabetes demonstrates 
significant reductions in mortality, amounting 
to a 28% reduction in cardiovascular and 

diabetes-related deaths over a 12-year period 
(Williamson et al, 2000). 

Despite evidence that weight loss can improve 
fasting glycaemia, HbA1c levels, dyslipidaemia 
and hypertension, the very drugs that have 
conventionally been used to treat type 2 diabetes, 
such as sulphonylureas and insulin are associated 
with increasing weight (Yki-Järvinen, 2001). 
These medications are typically associated with 
a 2 kg gain in weight for every 1 percentage 
point (10.9 mmol/mol) decrease in HbA1c (UK 
Prospective Diabetes Study Group, 1998). 

With the recent development of the 
glucagon-like peptide-1 (GLP-1) receptor 
agonist therapies, it is now possible to offer 
a licensed treatment approach to managing 
hyperglycaemia in type 2 diabetes that is 
associated with a reduction in weight. The 
injectable GLP-1 receptor agonists exenatide 
and liraglutide are associated with significant, 
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sustained weight loss (Visbol et al, 2007; Klonoff 
et al, 2008). In this respect, the GLP-1 receptor 
agonists are distinct from the orally administered 
dipeptidyl peptidase-4 (DPP-4) inhibitors that 
protect endogenous GLP-1 from degradation 
and are also referred to as GLP-1 enhancers. The 
DPP-4 inhibitors are generally regarded as weight 
neutral (Kendall et al, 2009) and shall not be the 
focus of this article. 

This review discusses the benefits of weight 
reduction associated with the GLP-1 receptor 
agonist therapies rather than the incretin effect 
per se, which is well described elsewhere (Holst 
et al, 2008).  

GLP-1 as a signal of nutritional abundance

Endogenous GLP-1 secretion results from 
differential processing of the glucagon gene 
product, proglucagon. This gene is expressed 
in the alpha-cells of the pancreas and also 
endocrine L-cells of the gut mucosa (Bell et 
al, 1983). In the alpha-cells of the pancreas the 
glucagon sequence of proglucagon is cleaved 
out and secreted. In the L-cells of the distal 
ileum, however, the glucagon sequence remains 
in a larger peptide called “glicentin” with no 
apparent biological activity, whereas GLP-1 is 
cleaved out and secreted in response to meal 
ingestion, and in response to the delivery of 
nutrients to the terminal ileum (Orskov et al, 
1986, Holst, 1997). 

In addition to enhancing pancreatic glucose-
dependent insulin secretion, GLP-1 has an 
important role as an enterogastrone – an 
intestinal hormone that inhibits gastrointestinal 
(GI) motility and secretion (Layer et al, 1995). 
GLP-1 secretion in response to meal ingestion 
provides nutritional feedback as part of the 
“ileal brake” mechanism, whereby the presence 
of unabsorbed nutrients in the lower small 
intestine reduces gastric emptying and GI 
secretion (Maljaars et al, 2008). 

As well as its inhibitory effect on GI motility, 
GLP-1 also appears to influence central appetite 
circuits. GLP-1 receptors have been identified 
in regions of the hypothalamus that are known 
to be involved in appetite regulation (Göke et 
al, 1995) and GLP-1 is produced centrally by 
subgroups of brainstem neurones that have 

been shown to be activated by gastric distension 
(Vrang et al, 2003). The central elaboration 
of GLP-1 in response to gastric distension 
may therefore represent a physiological signal 
to terminate ingestion of food. In this way, 
centrally acting GLP-1 may serve to enhance 
satiety as part of a “gastric brake” mechanism, 
complementing the inhibition of gastric motility 
by peripheral GLP-1 as part of the ileal brake 
mechanism described earlier. 

Central and peripheral satiety mechanisms 
may be impaired in people with type 2 diabetes 
as a result of a reduced GLP-1 response (Nauck 
et al, 2004). This may provide a reason for 
the propensity for weight gain in people with 
type 2 diabetes and may also serve to explain 
the apparent difficulties these people have in 
losing weight. 

The GLP-1 receptor agonist 
exendin-4 (exenatide) has a superior affinity 
for the GLP-1 receptor compared with the 
endogenous GLP-1 ligand (Runge et al, 
2008). Interestingly, in a mouse animal model, 
exendin-4 rapidly crosses the blood–brain barrier 
following peripheral administration (Kastin and 
Akerstrom, 2003) and appears to be much more 
potent than GLP-1 at reducing food intake in 
Zucker obese rats (De Fonseca et al, 2000). 

Figure 1 provides a rationale for the differential 
effects of GLP-1 receptor agonists and 
DPP-4 inhibitors in terms of weight profile. A 
simple explanation is the difference in degree of 
“GLP-1 receptor agonism” achieved with each 
therapy. While both types of agent have beneficial 
effects on pancreatic insulin and glucagon 
secretion, the greater degree of GLP-1 receptor 
agonism achieved with injectable GLP-1 receptor 
agonists results in important extra-pancreatic 
effects, such as delayed gastric emptying and 
modulation of appetite and food intake (Holst et 
al, 2008). However, unwanted GI side-effects such 
as nausea, vomiting and diarrhoea may arise as a 
result of the extra-pancreatic effects of injectable 
GLP-1 receptor agonist therapies.

The importance of the central and GI effects of 
GLP-1 receptor agonists is illustrated in a recent 
case study that demonstrates an improvement in 
glycaemic control that could not be attributable 
to enhanced insulin secretion (Paisley et al, 
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2009). This obese person had undetectable C-
peptide levels, suggesting that extra-pancreatic 
GLP-1 receptor agonist effects, such as weight 
loss due to increased satiety and delayed gastric 
emptying, in addition to glucagon suppression, 
resulted in improved insulin sensitivity and 
glycaemic control following  treatment with 
exenatide (Paisley et al, 2009).

Weight loss benefits of GLP-1 
receptor agonist therapy 

As well as reductions in blood glucose levels, 
exenatide, the first licensed GLP-1 receptor 
agonist, was associated with significant weight 
loss of 4.4±0.3 kg (95% confidence interval 
–3.8 to –5.1 kg) during an 82-week period of 
treatment corresponding to a 4.4% reduction in 
baseline body weight (Blonde et al, 2006). For 
the 82-week exenatide completer group (n=314), 
81% of treated participants had lost weight. 
An initial concern in this study was whether 
nausea could account for the observed weight 
reduction. However, weight loss was observed 
in people with varying amounts of nausea, 
including the majority of participants (54%) who 
had minimal or no nausea (Blonde et al, 2006). 
Furthermore, the incidence of nausea associated 
with GLP-1 receptor agonist administration was 
highest during treatment initiation and dose 
escalation, with nausea generally decreasing 
over a period of 4 weeks following initiation and 
subsequent dose escalation (Blonde et al, 2008). 

Clinical studies have shown that the effects 
on food intake are maintained over several years 
and lead to a sustained or progressive weight 
loss. Exenatide has been demonstrated to achieve 
a significant average weight loss of 5.3±0.4 kg 
maintained over 3 years (P<0.0001) (Figure 2), 
which is likely to be due to its actions of inducing 
satiety and reducing food intake independent of 
any GI side-effect (Edwards et al, 2001). 

In addition to clinical trial data, weight loss 
with exenatide has been demonstrated within 
a primary care setting. Clinical effectiveness 
of exenatide in people with type 2 diabetes was 
evaluated by extractions of data from a primary 
care electronic records database over a period of 
6 months. Average weight loss among the 1785 
people was 2.8 kg, from an average baseline 
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Figure 2. Effects of exenatide on metabolic parameters in people with type 2 diabetes 
inadequately controlled by metformin, sulphonylurea, or combined metformin and 
sulphonylurea therapy. Reproduced with permission from Klonoff et al (2008).
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Figure 1. The dose–response relationships for the effects of glucagon-like peptide-1 
(GLP-1). This figure illustrates the relationship between the plasma concentrations 
of endogenous GLP-1 or GLP-1 receptor agonists and their clinical effects and side-
effects, as observed during treatment with GLP-1 receptor agonists or incretin 
enhancers. With modestly elevated GLP-1 levels, as obtained both with GLP-1 
receptor agonists and incretin enhancers, there are significant effects on the pancreatic 
islets. Higher concentrations are needed to slow down gastric emptying and to reduce 
appetite and food intake. At even higher concentrations, which can be reached with 
GLP-1 receptor agonists, side-effects such as nausea, diarrhoea and vomiting might 
result. Reproduced from Holst et al (2008) with permission from Elsevier.



318	 Diabetes & Primary Care Vol 11 No 5 2009

Tailored use of GLP-1 receptor agonists in type 2 diabetes

weight of 110 kg, with 70% of people losing 
weight (Brixner et al, 2008). 

Weight loss as a therapeutic strategy 
in people with type 2 diabetes 

As a prerequisite to understanding the benefits of 
moderate weight loss as an important therapeutic 
strategy for people with type 2 diabetes, it is 
necessary to appreciate the high-risk “adiposity 
phenotype” that frequently presents in those 
with type 2 diabetes, and also to consider the 
significant benefits of moderate weight loss, 
achieved via preferential mobilisation of the high-
risk sites of fat accumulation. 

The accumulation of intra-abdominal, or 
“visceral” fat, liver fat and ectopic fat in skeletal 
muscle underlies the dyslipidaemia and glucose 
dysregulation seen in people with type 2 diabetes 
(Brewster, 2008). With respect to glucose 
dysregulation, visceral adipose tissue deposition 
has been shown to correlate consistently with 
degree of peripheral insulin resistance (Banerji et 
al, 1997; Ross et al, 2002). There is a also a direct 
association between atherogenic dyslipidaemia 
and propensity to store visceral fat (Désprés et al, 
1990). It is therefore not surprising that visceral 
fat deposition is associated with cardiovascular 
disease (Mathieu et al, 2009) as dyslipidaemia 
is the major risk factor for coronary artery 
disease (Turner et al, 1998). Indeed, almost 90% 
of obese people with ischaemic heart disease 
have evidence of visceral fat accumulation 
(Matsuzawa et al, 1994). 

The associations between visceral fat, 
dyslipidaemia and coronary heart disease 
have important implications for people with 
type 2 diabetes since as 50% of all deaths in 
such people are attributable to coronary heart 
disease (Hu et al, 2002). Notwithstanding the 
important association between visceral fat and 
cardiovascular risk, visceral fat deposition is also 
identified as an independent predictor of all-cause 
mortality (Kuk et al, 2006). 

The accumulation of liver fat in people with 
type 2 diabetes also has important implications. 
Evidence suggests that excess fat deposition in 
the liver is uniformly present before the onset of 
classic type 2 diabetes (Sattar et al, 2007; Shibata 
et al, 2007), and indeed liver fat content has 

impressive prognostic power in predicting onset 
of type 2 diabetes (Shibata et al, 2007; Kim et al, 
2008). Interestingly, just as visceral fat has been 
implicated in insulin resistance, supranormal 
liver fat accumulation in type 2 diabetes is also 
associated with the degree of insulin resistance 
(Younossi et al, 2004). 

Moderate weight loss using conventional diet 
and lifestyle techniques is associated with the 
preferential mobilisation and resolution of “high 
risk” visceral and liver fat depots relative to 
subcutaneous fat depots (Goodpaster et al, 1999; 
Smith and Zachwieja, 1999; Chaston and Dixon, 
2008). In one study over a 7-week period, a loss 
of 8% body weight was associated with an 80% 
decrease in hepatic fat (Petersen et al, 2005). 
Resolution of high-risk sites of fat accumulation 
may explain the mechanism by which relatively 
modest amounts of weight loss are often 
associated with seemingly disproportionate health 
benefits in at-risk groups. Notably, weight loss is 
expected to result in improved insulin sensitivity 
(Dengel et al, 2006). 

In one meta-analysis of weight management 
people with type 2 diabetes, a 12-week energy 
restricted diet was associated with a 9.6% 
reduction in body weight and a 25.7% reduction 
in fasting glucose (Anderson et al, 2003). Other 
benefits included reductions in the following 
cardiovascular risk factors: serum cholesterol, 
9.2%; serum triglycerides, 26.7%; systolic blood 
pressure, 8.1%; and diastolic blood pressure, 8.6% 
(Anderson et al, 2003). 

Metabolic benefits of GLP-1 receptor 
agonist-associated weight loss 

Interesting evidence is now emerging regarding 
the possible beneficial impact of GLP-1 receptor 
agonist therapy in relation to resolution of specific 
high-risk body fat depots, although further 
confirmatory research is required.

For example, measurement of total body fat, 
percentage fat, and lean tissue composition via 
a dual energy X-ray absorptiometry (DEXA) 
scan, as well as visceral, subcutaneous and liver 
fat measurement via a computed tomography 
(CT) scan was undertaken in a subgroup of 160 
people in the LEAD-2 (Liraglutide Effect and 
Action in Diabetes) trial (Jendle et al, 2008). A 

Page points

1.	As a prerequisite to 
understanding the benefits 
of moderate weight loss as 
an important therapeutic 
strategy for people with 
type 2 diabetes, it is 
necessary to appreciate 
the high-risk “adiposity 
phenotype” that frequently 
presents in those with  
type 2 diabetes. 

2.	Evidence suggests that 
excess fat deposition in 
the liver is uniformly 
present before the onset 
of classic type 2 diabetes, 
and indeed liver fat 
content has impressive 
prognostic power in 
predicting onset of 
type 2 diabetes.

3.	Resolution of high-risk 
sites of fat accumulation 
may explain the 
mechanism by which 
relatively modest amounts 
of weight loss are often 
associated with seemingly 
disproportionate health 
benefits in at-risk groups.

4.	Interesting evidence is 
now emerging regarding 
the possible beneficial 
impact of glucagon-
like peptide-1 receptor 
agonist therapy in 
relation to resolution of 
specific high-risk body fat 
depots, although further 
confirmatory research  
is required.



Diabetes & Primary Care Vol 11 No 5 2009	 319

Tailored use of GLP-1 receptor agonists in type 2 diabetes

significant reduction in visceral adipose tissue 
was seen with liraglutide at all doses compared 
with the sulphonylurea glimeperide (13–16% vs. 
5% P<0.05) over a 26-week period. The study 
also demonstrated preferential mobilisation of 
visceral fat in respect to subcutaneous fat loss 
(5–9%) with liraglutide at doses of 1.2 mg and 
1.8 mg (P<0.05). 

Assessment of liver fat via liver-to-spleen 
attenuation ratio using CT scanning was also 
made in the study. This ratio is constant in 
individuals with healthy livers, with reduced 
attenuation used as an indication of liver fat 
deposition. Importantly, reduced hepatic 
steatosis was identified in the group treated 
with 1.8 mg liraglutide, as evidenced by a 
significantly increased liver attenuation ratio 
(+0.10) in this group compared with the 
unchanged attenuation ratio in the glimepiride 
group (P<0.05) (Jendle et al, 2008). 

There are currently no corresponding trial 
data regarding the effect of exenatide on body 
composition. There is, however, a case report 
of a 73% reduction in liver fat, as measured by 
magnetic resonance spectroscopy, in the case 
of a 59-year-old Caucasian man, following 
44 weeks of exenatide therapy at a dose of 
20 µg twice daily (Tushuizen et al, 2006). This 
person also benefited from a weight reduction 
of 4.7% (88.5 kg at baseline to 84.3 kg) and 
from significant beneficial changes in several 
cardiovascular disease risk factors. It is noteworthy 
that the Dutch recipient in this case study had a 
baseline BMI of 28.7 kg/m2. 

While not providing information on 
body composition, a study by Klonoff et 
al (2008), involved 217 people (64% male, 
average age 58±10 years, mean weight 
99±18 kg, mean BMI of 34±5 kg/m2, HbA1c 
8.2±1.0% [66±10.9 mmol/mol]) who completed 
more than 3 years of exenatide treatment. The 
majority of exenatide-treated participants (68%) 
not only lost weight but also had a reduced 
HbA1c level. In addition, improvements were 
observed in hepatic biomarkers: people with an 
elevated serum alanine aminotransferase (ALT) 
at baseline (n=116) had significantly reduced 
ALT at the end of the 156-week study period 
(–10.4±1.5 IU/L; P<0.0001), and 41% of this 

subset achieved normal ALT. The study also 
demonstrated improvements in cardiovascular 
risk factors: in a subset of people who had serum 
lipids available for analysis (n=151), triglycerides 
decreased by 12% (P=0.0003), total cholesterol 
decreased by 5% (P=0.0007), LDL-C decreased 
by 6% (P<0.0001), and HDL-C increased 
by 24% (P<0.0001) compared with baseline 
(Klonoff et al, 2008). 

GLP-1 receptor agonist therapy:  
A NICE time to move beyond BMI? 

Readers should remember that GLP-1 receptor 
agonists are licensed for the management of 
glycaemic control in type 2 diabetes. However, 
due to the weight loss associated with their use, 
clinical guidelines have included BMI criteria in 
the recommendations concerning these agents. 
For example, the recently published NICE 
(2009) CG87 update in relation to blood glucose 
lowering agents sanctions the use of exenatide 
(liraglutide was not available at the time of 
guideline publication) in people who have a BMI 
≥ 35 kg/m2 in addition to specific psychological 
or medical problems associated with a high body 
weight, or <35 kg/m2 where insulin therapy 
would have significant occupational implications 
or if weight loss would benefit other significant 
obesity-related comorbidities. 

In previous guidance, NICE recommend the 
use of exenatide only in those people with a BMI 
greater than 35 kg/m2 (National Collaborating 
Centre for Chronic Conditions, 2008). The 
recent update and more liberal approach to the 
use of these agents is welcome, particularly as 
clinical evidence supports the use of GLP-1 
receptor agonists in people with type 2 diabetes 
who have a BMI less than the proposed NICE 
BMI “watershed” of 35 kg/m2. 

Significant weight loss (–3.9±0.7 kg; P<0.0001) 
has been demonstrated in a subgroup of people 
(n=63) with a baseline BMI of <30 kg/m2 treated 
with exenatide for 3 years (Klonoff et al, 2008). 
BMI ranges in insulin comparator trials have also 
been below the NICE cut-off value, involving 
participants whose BMI values were >27 kg/m2 
(Heine et al, 2005) and >25 kg/m2 (Nauck et al, 
2007) – both studies demonstrated non-inferiority 
in HbA1c reduction. 
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Consideration as to the origins of BMI casts 
some doubt regarding the rationale of using 
rather arbitrary BMI cut-off values to guide 
GLP-1 receptor agonist therapy. The concept of 
BMI – a simple ratio of weight in relation to height 
– was the work of Belgian statistician Adolfe 
Quetelet, who published his “Quetelet Index” in 
1832. It is important to emphasise that Quetelet 
had no interest in obesity when he developed 
this index; Quetelet’s mission was simply to use 
an index of relative weight to study the growth 
of normal man, having established that during 
normal growth, weight tends to increase in relation 
to height in metres squared (Eknoyan, 2008).

As Quetelet was a statistician rather than a 
physician it becomes easy to understand why 
it was not within his remit to consider the 
importance of body fat distribution and its 
impact on health when he formulated the idea 
behind the BMI. A further consideration is that 
Quetelet’s relative weight data were obtained 
solely from a Caucasian population and the 
validity of the established BMI cut-off values 
has recently been questioned when applied to 
other ethnic groups (World Health Organization 
[WHO] Expert Consultation, 2004). 

The importance of fat topography was not 
understood when Quetelet’s concept of a simple 
ratio of weight relative to height was adopted 
first by the insurance industry after World War 
II and later by the medical profession as a tool 
to categorise obesity. The lack of understanding 
regarding importance of body fat distribution 
may explain why, until recently, the extrapolation 
of BMI to assess health risk associated with excess 
body weight has remained unquestioned. 

Recent advances in obesity medicine and the 
more widespread use of imaging techniques to 
characterise body fat partitioning have served 
to highlight significant limitations of using 
BMI to assess health risks and tailor appropriate 
management strategies. This ratio does not 
take into account specific patterns of body 
fat partitioning and corresponding “adiposity 
phenotype” (Stefan et al, 2008). Thus, two 
people with exactly the same BMI can have very 
different patterns of body fat distribution and 
therefore have very different insulin sensitivities 
and cardiovascular risk profiles. 

The WHO (2009) defines obesity as abnormal 
or excessive fat accumulation that presents a risk 
to health. Waist circumference measurement 
has been demonstrated to predict distribution of 
adipose tissue in the abdominal region, including 
visceral fat mass both in overweight and healthy 
weight individuals (Lemiuex et al, 1996). Waist 
circumference, therefore, reflects the most 
clinically significant fat distribution and adiposity 
phenotype, there apparently being little value in 
measuring BMI (Chan et al, 2003). 

A recent prospective analysis involving over 
350000 people followed-up over almost 10 years 
underscores the importance of waist circumference 
measurement (Pischon et al, 2008). The study 
demonstrated a 17% increase in relative risk 
of death for men and 13% for women for every 
5 cm increase in waist circumference independent 
of BMI category, and suggests the use of waist 
circumference to predict risk, particularly in those 
with lower BMI values. 

In considering the use of GLP-1 receptor 
agonist therapies, rather than simple reliance 
on BMI criteria it may therefore be prudent to 
consider a more targeted approach to identify 
people most likely to benefit from the moderate 
weight loss associated with these agents. 
Tailoring of GLP-1 receptor agonist therapy 
may be achieved following the measurement 
of waist circumference and biomarkers of 
ectopic fat deposition to establish the exact 
nature of the presenting adiposity phenotype, 
independent of BMI category. 

Tailored use of GLP-1 receptor agonists 

Evidence presented to support the use of 
GLP-1 receptor agonists for blood glucose lowering 
in overweight and obese people with type 2 
diabetes includes significant, sustained weight loss 
and radiological and biochemical data suggesting 
a possible tendency towards preferential resolution 
of high-risk fat depots, as discussed earlier in this 
article. Raised ALT is the most important marker 
of hepatic steatosis and non-alcoholic fatty liver 
disease (NAFLD) (Marchesini et al, 2001), and 
raised triglyceride levels are a recognised marker of 
visceral fat accumulation (Couillard et al, 1998). 
The author of the present article postulates that 
a trend towards radiological resolution of visceral 
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and liver fat and improvement of biomarkers 
representative of these depots may therefore 
encourage the clinician to identify candidates for 
GLP-1 receptor agonist therapy who have evidence 
of visceral and liver fat accumulation, irrespective 
of BMI category. Such people may have the most 
to gain from GLP-1 receptor agonist therapy. 
Indeed, they may also have the most to lose from 
weight gain associated with some other classes of 
blood glucose lowering therapy. 

Identification of the “hypertriglyceridaemic 
waist” phenotype following screening for 
increased waist circumference measurement 
and elevated fasting triglyceride levels is a 
useful clinical concept and serves to identify 
individuals who have accumulated visceral fat 
mass. Importantly, the use of waist circumference 
>90 cm for men, together with plasma 
triglyceride concentration >2 mmol/L, has shown 
to be highly discriminatory for the development 
of coronary heart disease (Lemieux et al, 2000). 
Such people may therefore benefit from weight 
loss associated with GLP-1 receptor agonist 
therapy and the resulting improvement in 
cardiovascular risk factors. 

Evidence regarding improvements in liver fat 
content and serum ALT levels in people with 
type 2 diabetes and associated NAFLD following 
GLP-1 receptor agonist therapy may also be 
considered in attempts to tailor GLP-1 receptor 
agonist therapy. Intuitively, such individuals 
would appear most likely to gain additional 
benefit from GLP-1 receptor agonist therapy via 
normalisation of deranged hepatic biomarkers as a 
result of moderate weight reduction and resolution 
of liver fat accumulation. 

Conclusion 
Weight loss is an important therapeutic 
strategy in the management of type 2 diabetes. 
GLP-1 receptor agonist therapies represent a 
major advance in diabetes care and their blood 
glucose lowering action is accompanied by weight 
loss. It is becoming increasingly apparent that the 
effects of GLP-1 receptor agonist therapies are not 
confined to the pancreas. Additional beneficial 
effects of these agents are likely to reflect the 
role of GLP-1 as an enterogastrone hormone 
– signalling nutritional abundance to promote 

weight loss and possibly preferential resolution of 
high-risk fat depots. 

Data presented in this article support the 
concept of individual assessment to identify 
particular at-risk “adiposity phenotypes” 
likely to benefit most from the tailored use of 
GLP-1 receptor agonist therapies, independent 
of BMI category. 

GLP-1 receptor agonists represent an exciting 
new voyage of discovery in the management 
of type 2 diabetes and the potential of these 
agents is rapidly becoming clearer. In light of 
positive outcome data and increasing experience 
of GLP-1 receptor agonist therapy, it is perhaps 
time to consider less reliance upon Adolphe 
Quetelet and his concept of BMI to navigate 
the future course of our voyage. In the spirit of 
person-centred care, NICE may in the future be 
encouraged to extend the use of these promising 
agents “beyond BMI”.� n
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