Clinical Exercise Programmes in Community Settings Rationale and Challenges

Dr. Noel McCaffrey

- The rationale
- The evidence
- Where does community-based clinical exercise fit ?
- ExWell Medical
- Practical Issues and Challenges

the downward spiral

lower physical activity

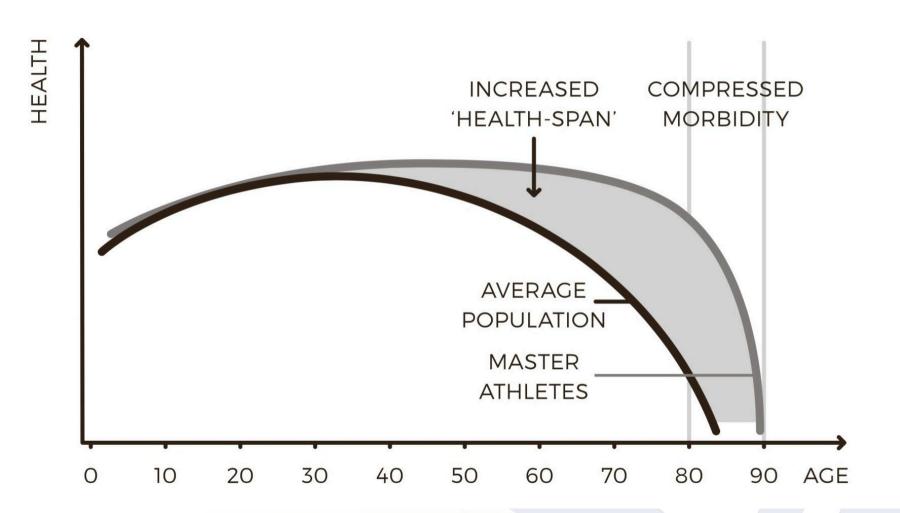
motivation &

reduced fitness

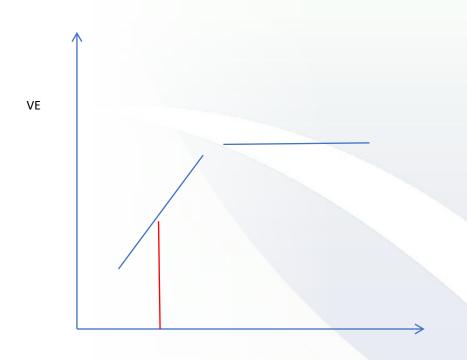
reduction in:

- strength
- aerobic capacity
- flexibility
- balance

- afraid to exercise
- afraid to become breathless


increased social isolation

- Ioneliness
- lack of enthusiasm
- · poor mental health


reduced mobility

- loss of independence
- family distress and burden of care
- cost of care

Strength work alone improves aerobic capacity in COPD

Time

	IR	T2DM	DysL	ВР	Ob	COPD	CHD	CHF	IC	OA	RA	ОР	FM	С	DEP	Asth
Path	Α	А	Α	Α	Α	D	Α	Α	Α	D	D	Α	С	D	D	D
spec symps	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	С	В	Α	В	Α	С
funct cap	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	Α	В	Α	Α
quality of life	Α	А	В	Α	Α	Α	Α	Α	Α	Α	В	В	Α	В	Α	В

Evidence for exercise as a treatment in chronic disease Pedersen & Saltin, 2006

A = strong several high quality studies

B = moderate at elast one HQ, a number moderate

C = little at least one moderate

D = none none

Beat It Programme

- Twice weekly exercise sessions
- Supervised by ex professional with specific certification
- Initial one-to-one session
- Personalised programme designed and carried out, under supervision, within group settings
- Medical clearance from GP of fitness to participate was required
- Max 15 per gropup

Table 3. Classification of participants at baseline and post program for clinical and fitness measures.

		Male			Female	
	Baseline	8 Weeks	<i>p</i> -Values	Baseline	8 Weeks	<i>p</i> -Values
BMI						
Normal (18.5-24.9)	24 (8.4)	25 (8.7)		43 (14.2)	46 (15.2)	
Overweight (25.0-29.9)	123 (43.0)	126 (44.1)		101 (33.4)	100 (33.1)	
Class I obesity (30.0-34.9)	93 (32.5)	98 (34.3)		76 (25.2)	77 (25.5)	
Class II obesity (35.0-39.9)	39 (13.6)	30 (10.5)		56 (18.5)	53 (17.5)	
Class III obesity (≥40)	7 (2.4)	7 (2.4)	0.03	26 (8.6)	26 (8.6)	0.185
Waist Circumference (cm) a						
Normal range	23 (8.0)	27 (9.4)		7 (2.3)	8 (2.6)	
Risk of chronic disease	263 (92.0)	259 (90.6)	0.100	295 (97.7)	294 (97.4)	0.313
Chair Sit and Reach (cm) b						
below standard	126 (46.7))	89 (33.0)		127 (45.7)	96 (34.5)	
meets or above standard	144 (53.3)	181 (67.0)	< 0.001	151 (54.3)	182 (65.5)	< 0.001
30 s Chair Stand (#) b						
below standard	155 (54.2)	102 (35.7)		162 (536.6)	84 (27.8)	
meets or above standard	131 (45.8)	184 (64.3)	<0.001	140 (46.4)	218 (72.2)	< 0.001
Six Minute Walk Test (m) b						
below standard	260 (90 9)	208 (72 7)		272 (90 1)	222 (73.5)	
meets or above standard	26 (9.1)	78 (27.3)	<0.001	30 (9.9)	80 (26.5)	< 0.001
30 s Arm curl (n = 223) b,c						
below standard	69 (61.1)	29 (25.7)		72 (63.7)	25 (22.1)	
meets or above standard	44 (38.9)	84 (74.3)	< 0.001	41 (36.3)	88 (77.9)	< 0.001

^a Criterion cut-off value for high risk of chronic disease obtained from Royal Australian College of General Practitioners [17]. ^b Criterion referenced fitness standards for age and gender obtained from Rikli and Jones [18]. ^c Participants with wrist, elbow, upper limb injuries, or who had recent surgery were excluded from this test.

Issues

- No follow up
- No control group
- Practicality of ...
 - Invididual initial assessments
 - Personalised programmes within group setting
- Non integration impacts scalability

comorbidities

concordant

- Hypertension
- CVD
- Renal disease

discordant

- Depression
- Arthritis
- Thyroid disease
- COPD

RESEARCH ARTICLE

Open /

The comorbidity burden of type 2 diabetes mellitus: patterns, clusters and predictions from a large English primary care cohort

Magdalena Nowakowska^{1,2*}, Salwa S. Zghebi^{1,2}, Darren M. Ashcroft^{1,3,4}, lain Buchan^{5,6}, Carolyn Chew-Gra Tim Holt⁸, Christian Mallen⁷, Harm Van Marwiik⁹, Niels Peek^{4,5,10}, Rafael Perera-Salazar⁸, David Reeves^{1,2,11},

- Clinical Practice Research Datalink (CPRD)
- patients diagnosed with T2DM between 2007 and 2017 identified.
- n = 102,394

Females

- 1. Hypertension
- 2. Depression
- Hypothyroidism
- Asthma
- CKD
- CHD

COPD (lower SEG)

Males

- 1. Hypertension
- 2. CHD
- Depression
- COPD (lower SEG)
- CKD
- Asthma

Article

Implementing Low-Cost, Community-Based Exercise Programs for Middle-Aged and Older Patients with Type 2 Diabetes: What Are the Benefits for Glycemic Control and Cardiovascular Risk?

Romeu Mendes ^{1,2,3,*} [©], Nelson Sousa ^{2,4} [©], Victor Machado Reis ^{2,4} and Iose Luis Themudo-Barata ⁵

- 9 month programme
- 3 per week ex classes
- low cost / community facilities
- n = 124 participants / 85 controls

All measures improved

- HbA1c
- Lipid profile
- Fasting glucose
- Blood pressure (sys / diast)
- 10 yr CHD risk

Original Investigation | Diabetes and Endocrinology

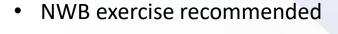
Effectiveness of a Community-Based Structured Physical Activity Program for Adults With Type 2 Diabetes A Randomized Clinical Trial

Aishee B. Mukherji, BA; Di Lu, MS; FeiFei Qin, MPH; Haley Hedlin, PhD; Neil M. Johannsen, PhD; Sukyung Chung, PhD; Yukari Kobayashi, MD; Francois Haddad, MD;

- IMPACT Study California 2016-2019
- n = 357
- Usual care / once weekly exercise / 3 times weekly exercise
- 6 months
- HbA1c levels improved only on the 3 / week group

Diabetic Foot Ulcers

- treatment of foot infection
- appropriate dressing plans with regular sharp debridement of nonviable tissue
- revascularisation (if indicated)
- pressure offloading
 - offloading device (cast)
 - Controlled Ankle Motion walker
 - rest (exercise avoidance)
- IWGDF has guidelines for reducing risk of developing DFU
- But can exercise improve DFU healing?
- This would avoid the risks of inactivity


REVIEW Open Access

Does exercise improve healing of diabetic foot ulcers? A systematic review

Morica M. Tran^{1*} and Melanie N. Haley²

- 3 RCTs
- Non weight bearing exercise x 12 weeks
- One supervised, 2 non supervised
- No strong evidence in support
- All showed some degree of wound size reduction

RESEARCH Open Access

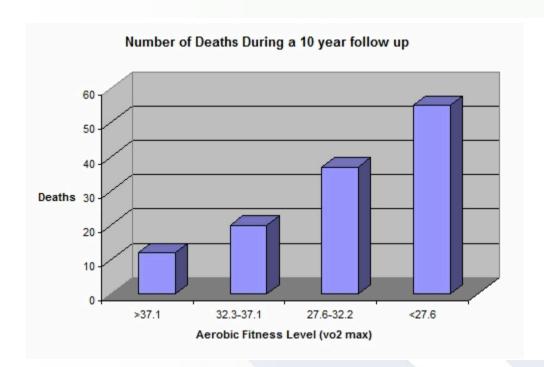
Exercise in adults admitted to hospital with diabetes-related foot ulcers: a pilot study of feasibility and safety

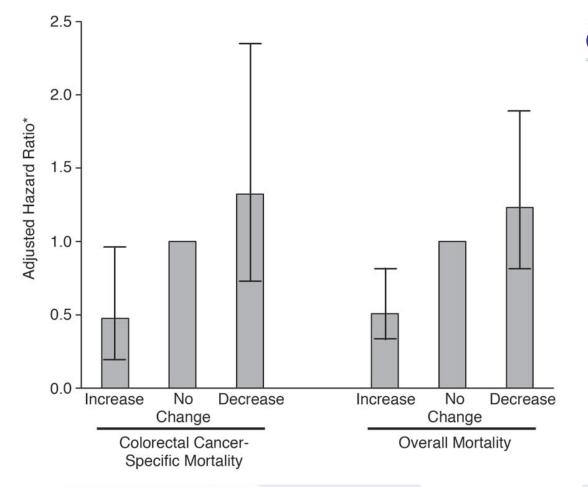
Emily Aitken¹, Jonathan Hiew^{2,3}, Emma J Hamilton^{3,4,5}, Laurens Manning^{3,5,6}, Jens Carsten Ritter^{3,7,8}, Edward Raby⁶ and Paul M Gittings^{1*}

- n = 20
- Mixed weight bearing (with offloading) and NWB
- Podiatry support
- In-hospital and post-discharge exercise
- Individual tailoring based on ulcer location
- Targeted weight bearing
- Ergometers

Table 4 Primary outcome feasibility and safety outcome data

Outcome	n	%
Recruitment	20 of 42	47.6
Retention	19 of 20	95.0
Adherence to study	15 of 20	75.0
Adherence to home exercise	10 of 20	50.0
Adverse Events	0	0.00

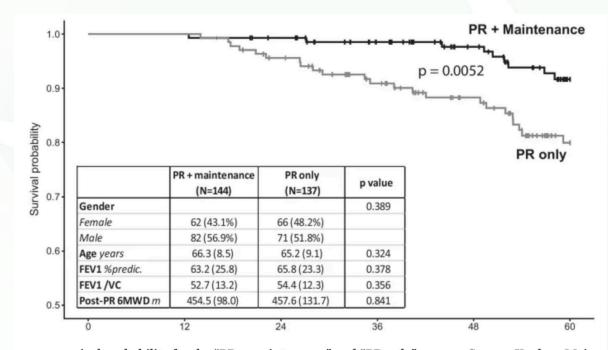



Dual-axis graph for all-cause, cardiovascular and non-cardiovascular deaths according to exercise habit change.

Effect of change in physical activity pre- to post-treatment in patients with colorectal cancer Nurses Health Study Cohort 1976-2004: Meyerhardt J et al, 2006

			N events/total	patients (%)			
Postoperative pulmo	nary complications	N RCTs	intervention	control	RR (95% CI)	TSA	
All	→	23	165/934 (17%)	289/930 (31%)	0.52 (0.41 to 0.66)	Conclusive	
Surgery							
Cardiac	-	5	45/308 (15%)	85/305 (28%)	0.53 (0.38 to 0.73)	Conclusive	
Lung	─	10	44/284 (15%)	102/282 (36%)	0.45 (0.33 to 0.60)	Conclusive	
Abdominal	─	6	21/192 (11%)	41/192 (21%)	0.50 (0.32 to 0.78)	Unclear	
Esophagectomy —	\lordrightarrow	2	55/150 (37%)	61/151 (40%)	0.73 (0.30 to 1.78)		
Training							
Endurance	→	4	29/228 (13%)	61/232 (26%)	0.50 (0.34 to 0.74)	Conclusive	
Respiratory muscles		10	102/504 (20%)	152/502 (30%)	0.61 (0.39 to 0.94)	Unclear	
Combined -	─	9	34/202 (17%)	76/196 (39%)	0.43 (0.31 to 0.60)	Conclusive	
Duration of training							
One week	→	7	33/272 (12%)	79/271 (29%)	0.43 (0.30 to 0.62)	Conclusive	
> 1 week	→	16	142/662 (20%)	210/659 (32%)	0.56 (0.41 to 0.76)	Conclusive	
0.1	1.0	10.0					
	RR (95% C						

Figure 3. Analysis of postoperative pulmonary complications according to type of surgery, type of exercise training, and duration of training. CI = confidence interval; RCT = randomized controlled trial; RR = relative risk; TSA = trial sequential analysis.


The exercise in pulmonary arterial hypertension (ExPAH) study Chia et al, 2018

- outpatient supervised exercise + behaviour change
- 2 sessions / wk
- Aerobic ex (20 mins), strength (20 mins), resp exercises (10 mins)
- feasible, acceptable, enjoyable
- improved symptoms (dyspneoa, mental wellness)
- improved haemodynamics

Efficacy of a long-term pulmonary rehabilitation maintenance program for COPD patients in a real-life setting: a 5-year cohort study

<u>Léo Blervaque, Christian Préfaut, Hélène Forthin, Francis Maffre, Marion Bourrelier, Nelly Héraud,</u>
Matthias Catteau, Pascal Pomiès, Dany Jaffuel, Nicolas Molinari, Maurice Hayot & Fares Gouzi ⊡

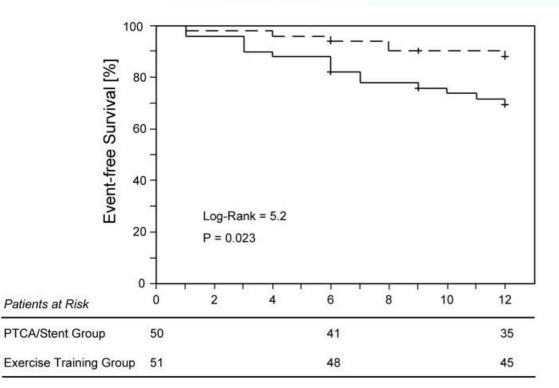
5-year survival probability for the "PR + maintenance" and "PR only" groups. Curves: Kaplan—Meier analysis; gray line: "PR only" group; black line: "PR + maintenance" group. Table: Comparison of main clinical characteristics of the "PR + maintenance" and "PR only" groups

Percutaneous Coronary Angioplasty Compared With Exercise Training in Patients With Stable Coronary Artery Disease

A Randomized Trial

2004

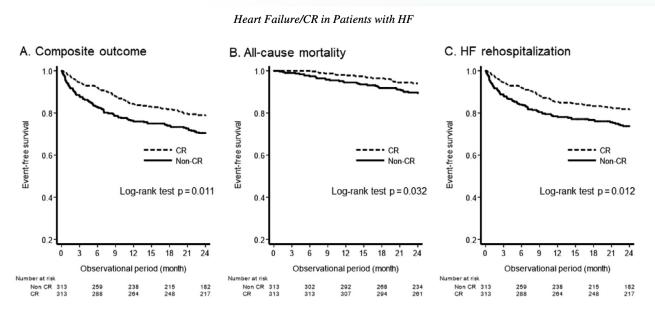
Rainer Hambrecht, MD; Claudia Walther, MD; Sven Möbius-Winkler, MD; Stephan Gielen, MD;


- n =101 males
- Stable angina and one stenosed vessel
- 20 mins / day cycle erg @70% max HR during stress test
- + 1 x group session x 60 mins weekly

Exercise Group

- Increased exercise tolerance
- Increased VO2 max
- Increased survival

Figure 2. Event-free survival after 12 months was significantly superior in exercise training group versus PCI group (P=0.023 by log-rank test).


Follow up [Months]

Prognostic Effects of Cardiac Rehabilitation in Patients With Heart Failure (from a Multicenter Prospective Cohort Study)

Takuji Adachi, PhD, PT^a, Naoki Iritani, MSc, PT^b, Kuniyasu Kamiya, PhD, PT^c,

2022

- n = 626
- CR weekly (x2) x 6 mo vs control
- Acute HF or worsening CHF

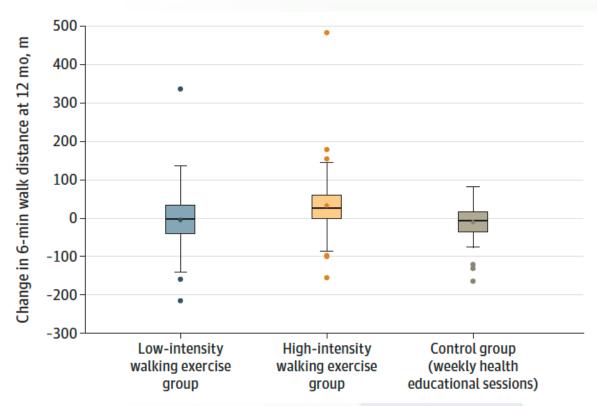
Figure 2. Kaplan—Meier curves for the composite outcome, HF rehospitalization, and all-cause mortality according to cardiac rehabilitation.

Optimal Exercise Programs for Patients With Peripheral Artery Disease

A Scientific Statement From the American Heart Association

2019

- a structured H-BEx intervention improves the 6-MWT distance more than it improves treadmill-based PWT/PWD
- a supervised treadmill exercise intervention improves treadmill walking more than it improves the 6-MWT.

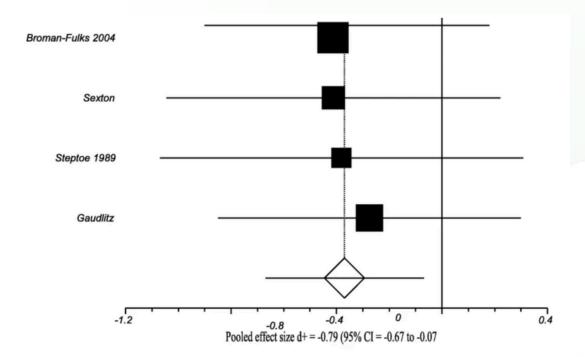


JAMA | Original Investigation

Effect of Low-Intensity vs High-Intensity Home-Based Walking Exercise on Walk Distance in Patients With Peripheral Artery Disease The LITE Randomized Clinical Trial 2021

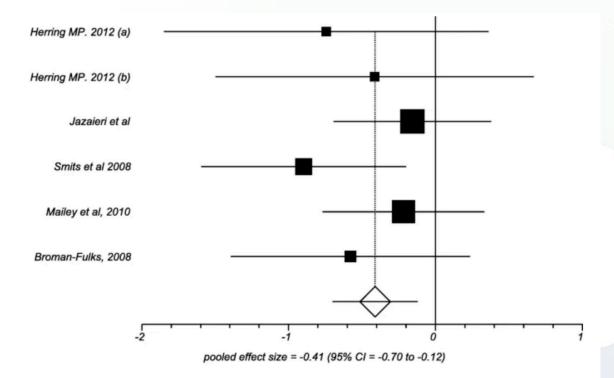
Mary M. McDermott, MD; Bonnie Spring, PhD; Lu Tian, ScD; Diane Treat-Jacobson, PhD, RN; Luigi Ferrucci, MD, PhD; Donald Lloyd-Jones, MD;

- n = 305
- unsupervised exercise (high intensity / low intensity) and control groups
- 5 x 50 min. walk sessions / week x 12 months
- high = with pain / low = without pain
- accelerometry +
- 82% completed 12 month assessment
- primary outcome = 6MWT



Research article | Open Access | Published: 16 July 2018

Exercise in the treatment of clinical anxiety in general practice – a systematic review and meta-analysis


Elizabeth Aylett , Nicola Small & Peter Bower

High (min 60% HR max or VO2 max) vs low intensity exercise for treating anxiety Exercise programme duration min 2 weeks

Exercise vs waiting list controls in treating anxiety

Aerobic exercise in RA (Ye et al, 2022)

Meta-analysis of 13 RCTs

Outcomes:

- functional ability: Health Assessment Questionnaire-Disability index (HAQ-DI);
- disease activity: Disease Activity Score in 28 joints (DAS28);
- joint count, including
 - tender joint count (TJC)
 - swollen joint count(SJC)
 - o Ritchie Articular Index (RAI),
- Inflammatory markers (CRP and ESR);
- pain (VAS or the Short Form McGill Pain Questionnaire)
- aerobic capacity VO2max
- Sit to Stand (STS) test.

Improvements in

- Aerobic capacity
- Functional ability
- Pain relief
- Strength (Sit to Stand)

6-week group exercise / education progr in FM *Loftus, N et al (2022)*

- moderate, short-term (6 weeks) benefits in
 - physical fitness
 - key symptoms.
- benefits were
 - sustained at 6 months
 - small-to-moderate in scale and and lower than the MCID.

Exercise Therapy for Fibromyalgia *Busch, J et al, 2011*

- reduction of pain
- Reduction of fatigue
- reduction of depression
- improvement in global health
- improved physical function.

Non Specific Chronic Low Back Pain

• General ex prog (strength, flexibiloity, aerobic fitness) beneficial

Not recommended in acute LBP, which ge6ts better anyway in 4-6 weeks in most cases

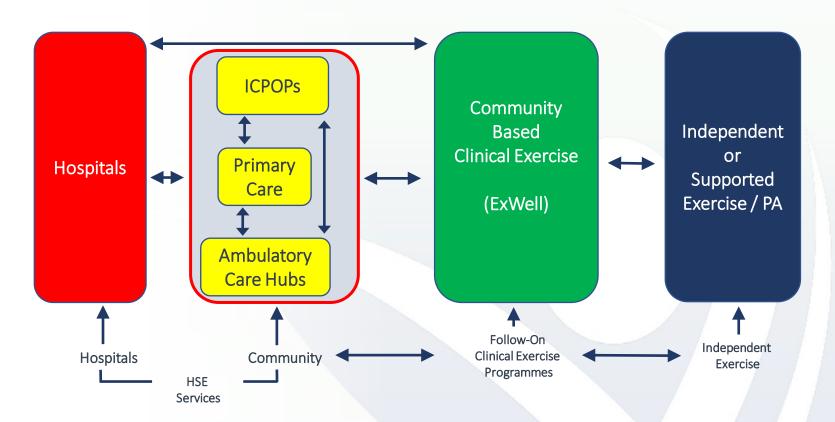
Where does community-based clinical exercise fit ?

ICPOP

Integrated Care Programme for Older Persons

- Team of 12
- Mixed hospital and community
- Physio x 1
- Consultants and other specialties

CDH


Chronic Disease Hub

- Team of 36
- Mixed hospital and community
- Larger rehab capacity

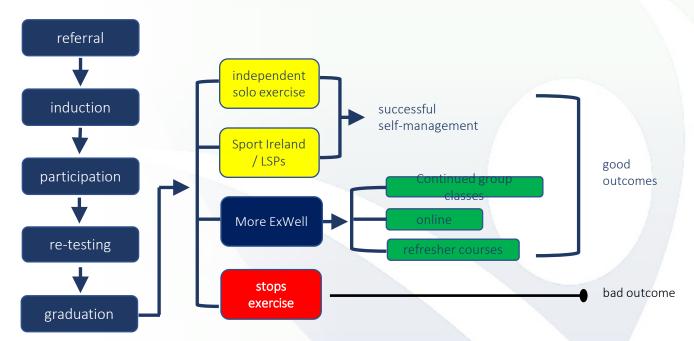
National Structure

- 1 ICPOP and 1 CDH will co-locate
- Combined unit will serve population of 150,000
- = Community Health Networks x 3 @ 50,000 each
- 31 units total (1 unit = ICPOP + CDH)
- 93 CHNs

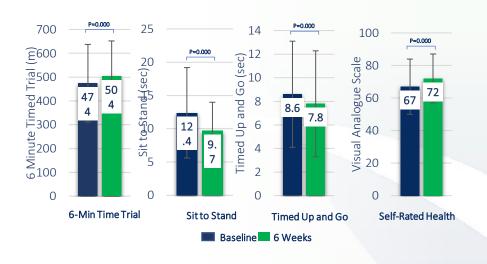
ExWell Medical

- social enterprise
- 22 centres
- over 2000 weekly visits
- on-line offering
- medical oversight
- staff = 21
- Sports science / physio background
- 19 funded or subsidized projects
- HSE agreements growing

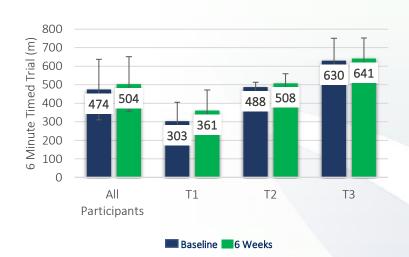
core pillars


- exercise
- social interaction
- impact measurement

- adherence surveillance / monitoring
- research



the pathway


impact

6 Minute Time Trial Data (Citywest)

Key impact messages

- All outcomes improve
- They improve quickly (6 weeks)
- The scale of change exceeds MCID for 6MTT and SS
- The greatest relative improvements occur in those who start off the weakest

Practical Challenges

- functional ability
- progression
- class format
- age
- disease specificity
- frailty
- communication difficulty
- workers
- pain
- Covid
- class format
- programme duration
- engagement / dropout
- delivery model

different functional abilities

- level options for aerobic exercises
- stations by ability
- include chair station
- classes by ability
- heavy / light weights

progression

- happens naturally
- education about what progression means
- criteria
 - tolerance of class with appropriate 'distress'
 - no adverse events
 - adequate time at one level
 - · objective tests improving
 - willingness to move
 - tolerance of new level

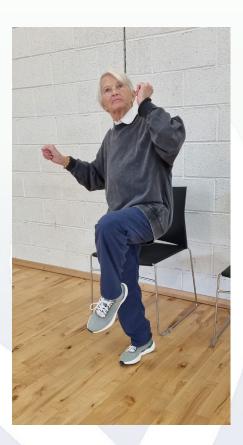
age

- younger participants may panic
- address it at induction
- offer 'young' class
- young station
- individual attention

disease specific programmes

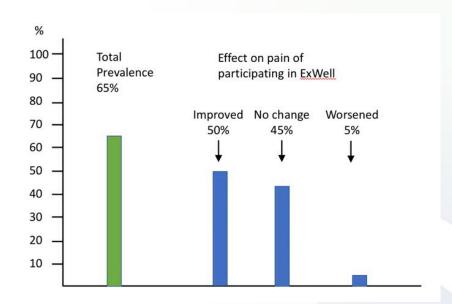
- ? not necessary
- exceptions
 - PAD
 - Cancer
- mixed classes
 - beneficial
 - inspiration from seeing others
 - facilitate scaling

frailty / high need


- individual assistance (relative or ExWell intern)
- careful progression, starting with strength only

communication difficulty

- deafness /cataracts / cognitive decline
- awareness
- staff training
 - stand in front
 - stand close
 - repeat introductions
 - don't rush
 - vigilance for poor understanding
 - avoid technical language
 - age-friendly brochures (font size etc.)


participants who are still working

- programmes work because of down time facility use
- evening access difficult
- solution may be early morning classes

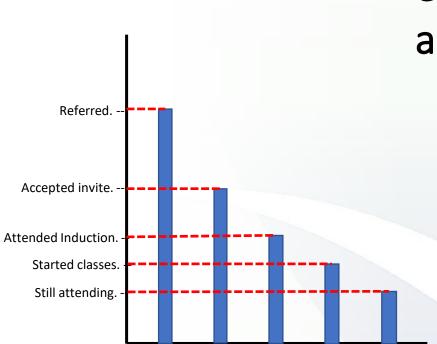
Pain

Covid

- at any time , follow DoH guidelines
- keep the participants informed
- clinical exercise sessions are medical appointments
- pods / spacing / masks
- hygiene re equipment
- open the doors
- outdoor classes

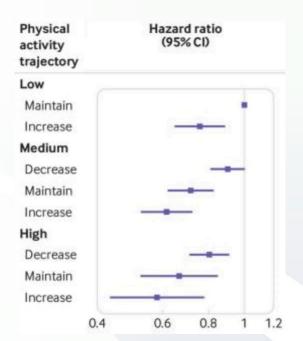
class format

- all options work
 - o stations
 - o circuits
 - one large group
- some like variety, some want no change


offer the options

Programme Duration

- benefits occur quickly
- minimum 12 weeks preferred
- long-term maintenance preferred
- ? occasiinal 'refresher' courses
- ? transition to online
- aim to also increase non-class PA levels



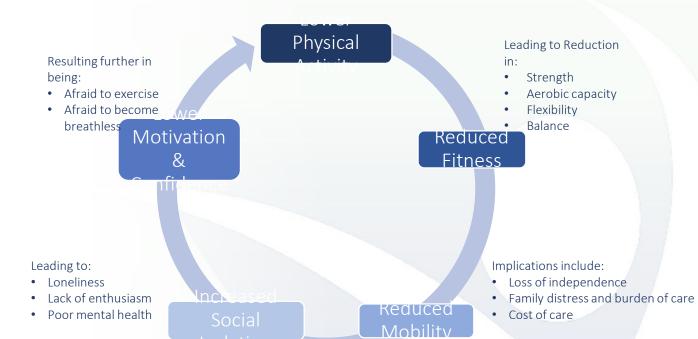
overview

exercise-related factors outcomes activity levels mortality fitness quality of life body composition

- Your current (today) level of physical activity level predicts your risk of mortality from
 - all causes
 - cardiovascular disease
 - Cancer

 Meeting and maintaining at least the minimum public health recommendations (150 minutes per week of moderate-intensity physical activity) would potentially prevent almost half of all the deaths associated with physical inactivity

- Middle aged and older adults, including those with cardiovascular disease and cancer, will live longer by becoming more physically active,
- This benefit happens regardless of
 - past activity levels
 - changes in established risk factors, including overall diet quality, bodyweight, blood pressure, triglycerides, and cholesterol

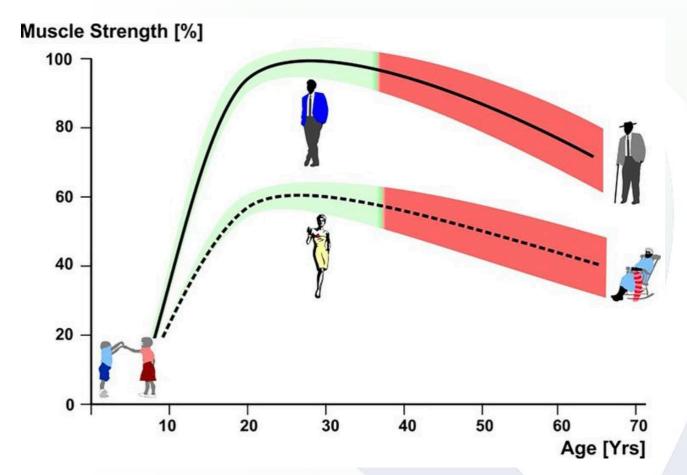


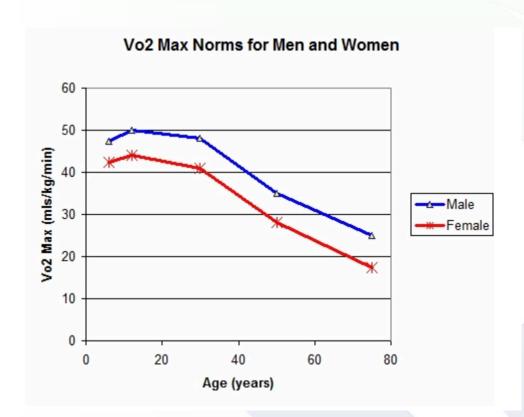
Public health strategies should shift the population towards

- meeting the minimum recommendations
- preventing declines in physical activity during middle and late life


 Physical activity trajectories and mortality: population based cohort study, 2019, Mok. A et.al




The Downward Spiral

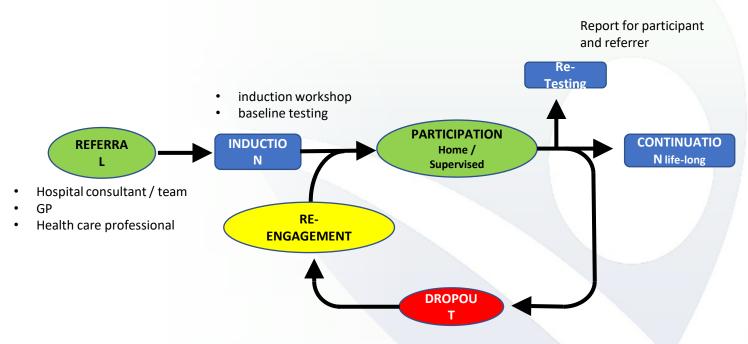


- What is the issue?
- What is the challenge in dealing with the issue?
- What is our solution?

The Issue

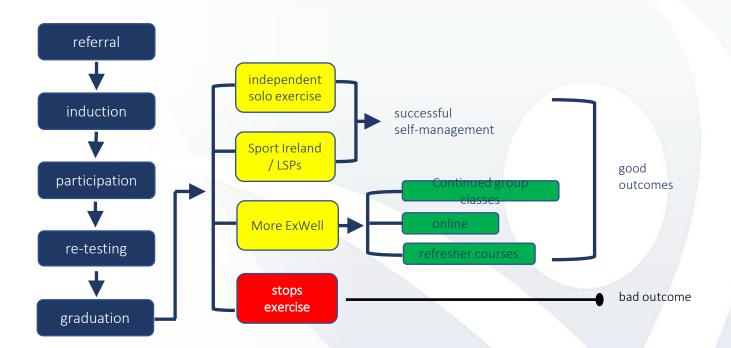
C I affects 84% people over 65. Many have multiple CIs. CI management consumes 75% of the entire health budget of €20 billion. Huge impact on patients, families and society. Knock-on loneliness. Worsening with aging population. Not tenable long-term

The Challenge


Impossible to deliver CI management (at the scale required) in hospitals. Emerging Community structures have 2 main challenges: 1. capacity 2. exit pathway

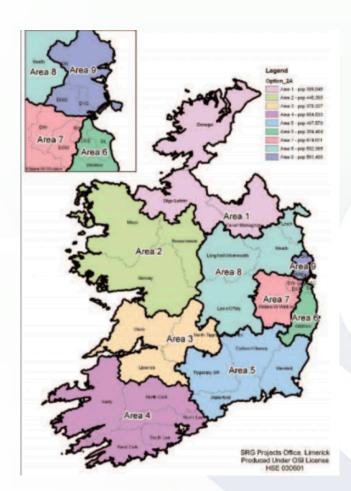
The Solution

ExWell offers a follow on resource to both hospital and HSE community services which solves both the capacity and the graduation challenges

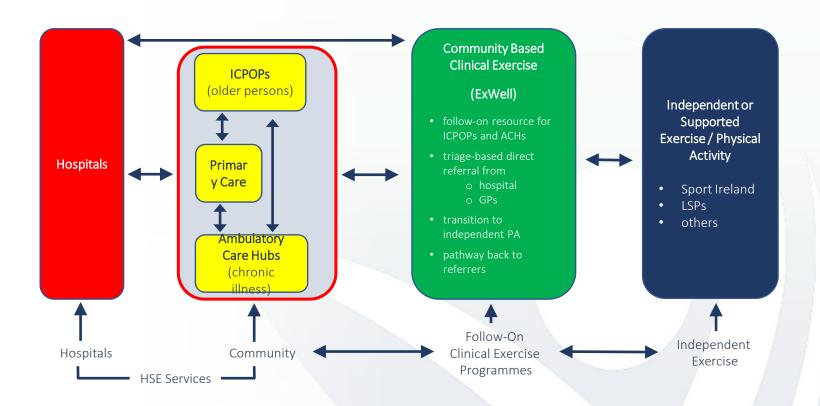

The ExWell Pathway

Planned or unplanned absence

The Participant Pathway



Core Principles


- Exercise
- Social interaction
- Impact measurement

- Adherence surveillance / monitoring
- Research

The ExWell Healthcare Model

ExWell Engagement Strategy

- HSE
- Health Insurers
- Sport Ireland
- Pharma
- Local Authorities
- Advocacy Groups
 - o ICS
 - o IHF
 - o CanTeen
- Home Care

Funders,
Policymakers,
Supporters

Referrers

- GPs
- Hospital Teams
- ICPOPs
- CDHs
- Social Prescribers
- AHPs
- Pharmacists
- Advocacy Groups

Delivery Partners

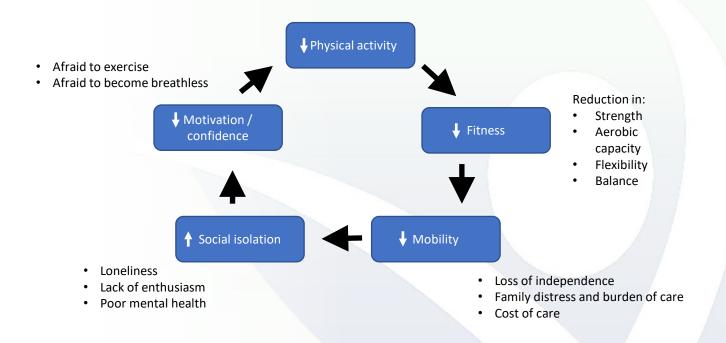
- GAA
- Comm Centres
- Sports Centres
- 3rd Level Institutions
- Advocacy Groups
- Local Authorities
- Private Gyms

engagement framework

- HSE
- Health Insurers
- Sport Ireland
- Pharma
- Local Authorities
- Advocacy Groups
 - o ICS
 - o IHF
 - o CanTeen
- Home Care

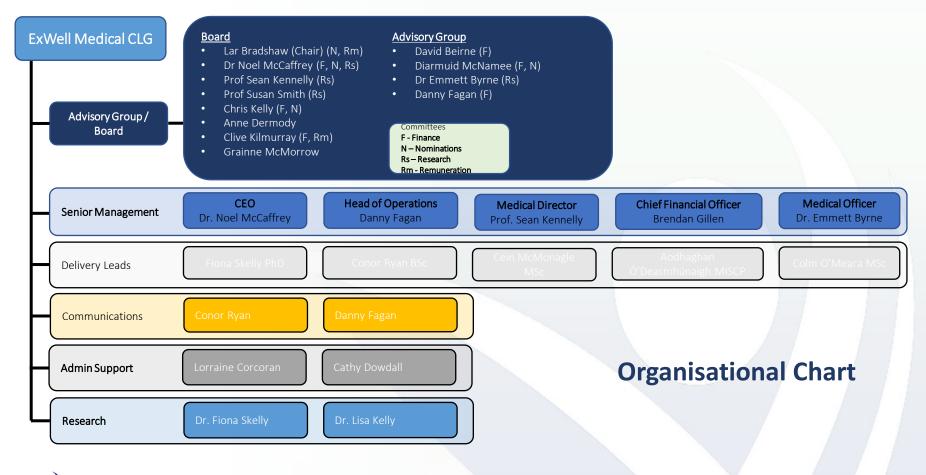
Funders, Policymakers, Supporters

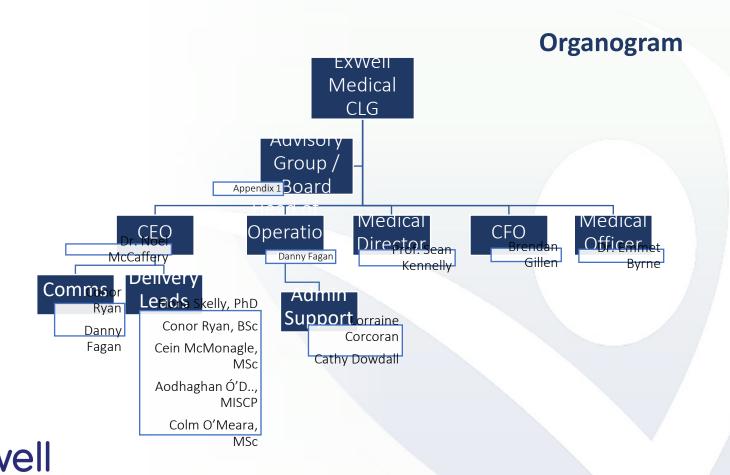
Referrers


- GPs
- Hospital Teams
- ICPOPs
- CDHs
- Social Prescribers
- AHPs
- Pharmacists
- Advocacy Groups

Delivery Partners

- GAA
- Community Centres
- Sport Centres
- 3rd Level Institutions
- Advocacy Groups
- Local Authorities
- Private Gyms





The Downward Spiral

funded projects

HSE

- CHO 7 (4)
- Midlands (DMHG) (3)
- CHO 9 (2)

Active Cities

- BallymunSwords
- Sandyford

Local Support

- Balbriggan
- Mulhuddart
- Ballybough (NEIC)

Orpea

SETU (Carlow)

Nursing Home

Sport Ireland PACC

CanTeen

TCC

non-funded projects

- IWA
- Kilkenny
- WaterfordSligo
- DLR

new proposals

- Mullingar CHO 8
- Sligo CHO 1
- Cork CHO 4
- S-East CHO 5
- VHI
- Centric
- TCC F-Up
- VHI

cancer

Service

- ICS
- Mater
- SVUH
- SJH
- Research PANO

research

- Current projects
- Research committee

Staff: 21 total / 16.5 WTE Visits: 1600 / week

other activity

- SponsorshipNovartis
- Levels
- Leveis
- Festival
- Staff Retention
- Awareness
 - o Annual Report
 - Ten StoriesNewsletter
 - o Website
- Volunteerism
- Choir
- TUD partnership
- Weekly Zoom
- Recruitment
- Nutrition

ExWell Core Values

Lar Bradshaw Board Chair, ExWell Medical

1. Patient Centred

- Transforming the lives of the chronically ill.
- Holistic approach
- Inclusive and welcoming
- Respect for participants

2. Can Do Attitude

- We will always find a way...
- Resilience
- Creativity / innovation

3. Passion and Commitment

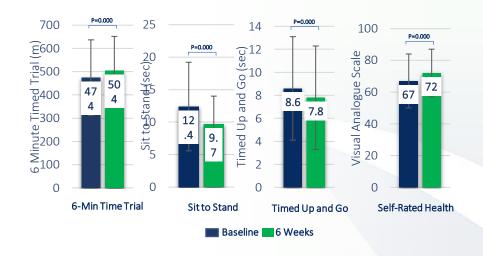
- The passion that comes from our noble purpose..
- Commitment to excellence and the desire to serve.
- Pride
- Life is too short. Our passion comes with a sense of energy and enjoyment / fun

4. Collaboration Based on Trust, Integrity

- Our instinct is to trust
- The only way to deliver our mission is through collaboration
- Building trust:
 - integrity (we tell the truth)
 - reliability (we do what we say we will do)
 - win / win approach (we strive for mutual benefit)
 - do what is right (we behave ethically at all times).
- We will seek out those who share those characteristics

5. Pursuit Of Truth, Not Ego

- ExWell has a big heart, and a big head.
- We have no place for "politics", we have no room for pursuit of ego.
- We believe in the hierarchy of ideas and the obligation to dissent and to be dissented against, because out of disagreement comes insight.


6. We Are A Team

We are a team. This means we commit to the following:

- Honesty of effort
- Be the best we can be
- Courage
- Look after each other

Changes in Key Outcomes after 6 Weeks in Citywest

