

Aerobic exercise and weight loss in adults: dose-response meta-analysis

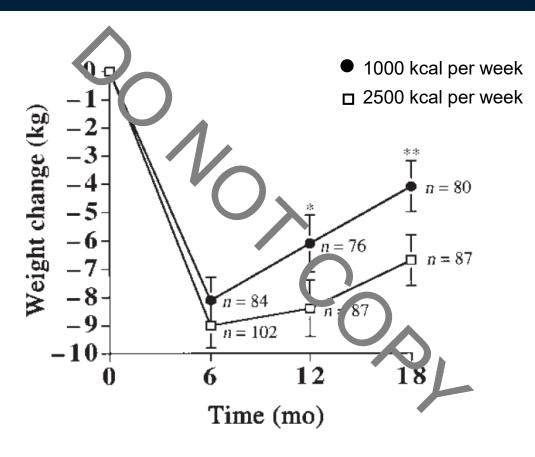
Long term effects of diet and/or exercise on weight loss: network meta-analysis

	Diet vs Exercise
Body weight (kg)	-2.93 (-4.18, -1.68)
Waist circumference (cm)	-1.75 (-4.12, 0.62)
Fat mass (kg)	-2/20 (-3.75, -0.66)
Waist-to-hip ratio	-0.00 (-5.01, 0.01)
Total cholesterol (mg/dl)	-3.91 (-8.11, 0.30)
LDL cholesterol (mg/dl)	-3.19 (-6.85, 0.48)
HDL cholesterol (mg/dl)	-0.96 (-1.88, -0.4)
Triglyceride (mg/dl)	-3.80 (-12.21, 4.62)
Diastolic BP (mmHg)	-1.33 (-3.00, 0.35)
Systolic BP (mmHg)	-2.19 (-4.23, -0.15)
VO ₂ max (ml/kg/min)	-1.16 (-2.42, 0.09)

Studies at least 12 months in duration, values mean difference (95% CI)

Schwingshackl et al (2014) Syst Rev, 3:130

Long term effects of diet and/or exercise on weight loss: network meta-analysis


	Diet vs Exercise	Diet & Exercise vs Diet
Body weight (kg)	-2.93 (-4.18, -1.68)	-1.38 (-1.98, -0.79)
Waist circumference (cm)	-1.75 (-4.12, 0.62)	-1.68 (-2.66, -0.70)
Fat mass (kg)	-2 25 (-3.75, -0.66)	-1.65 (-2.81, -0.49)
Waist-to-hip ratio	-0.00 (-5.61, 0.01)	-0.01 (-0.02, -0.01)
Total cholesterol (mg/dl)	-3.91 (-8.11, 0.30)	-2.19 (-7.84, 3.46)
LDL cholesterol (mg/dl)	-3.19 (-6.85, 0.43)	-0.93 (-6.14, 4.27)
HDL cholesterol (mg/dl)	-0.96 (-1.88, -0.4)	1.62 (0.28, 2.95)
Triglyceride (mg/dl)	-3.80 (-12.21, 4.62)	-10.08 (-17.38, -2.79)
Diastolic BP (mmHg)	-1.33 (-3.00, 0.35)	-1.20 (-2.26, -0.15)
Systolic BP (mmHg)	-2.19 (-4.23, -0.15)	-0.24 (-1.45, 0.97)
VO ₂ max (ml/kg/min)	-1.16 (-2.42, 0.09)	3.61 (2.07, 5.14)

Studies at least 12 months in duration, values mean difference (95% CI)

Schwingshackl et al (2014) Syst Rev, 3:130

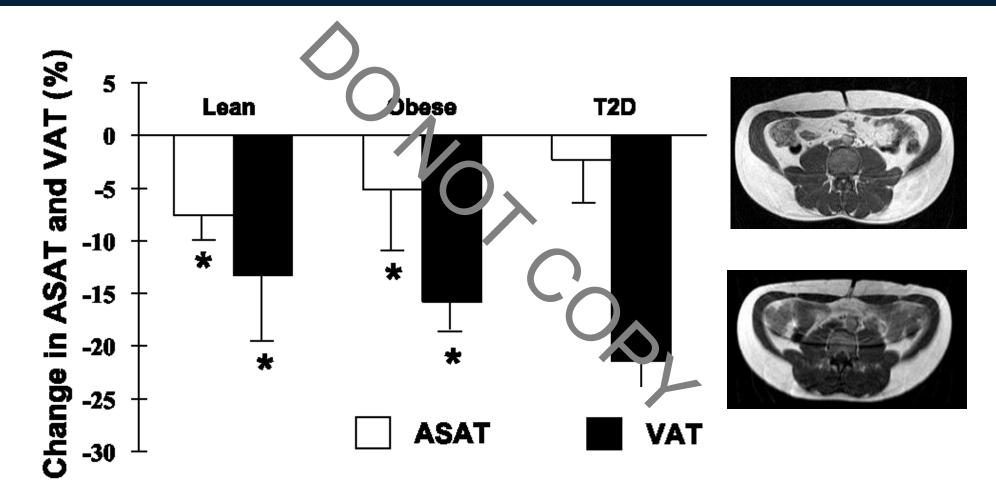
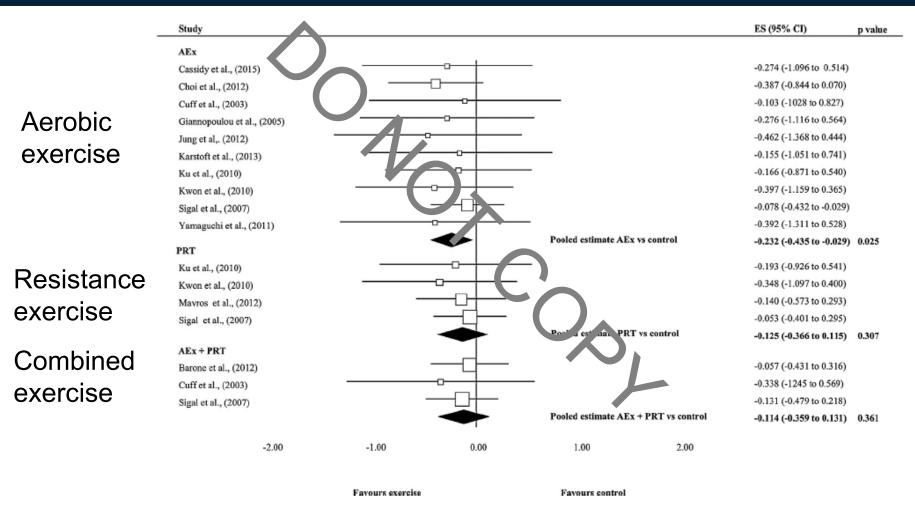

Physical activity and long-term weight maintenance

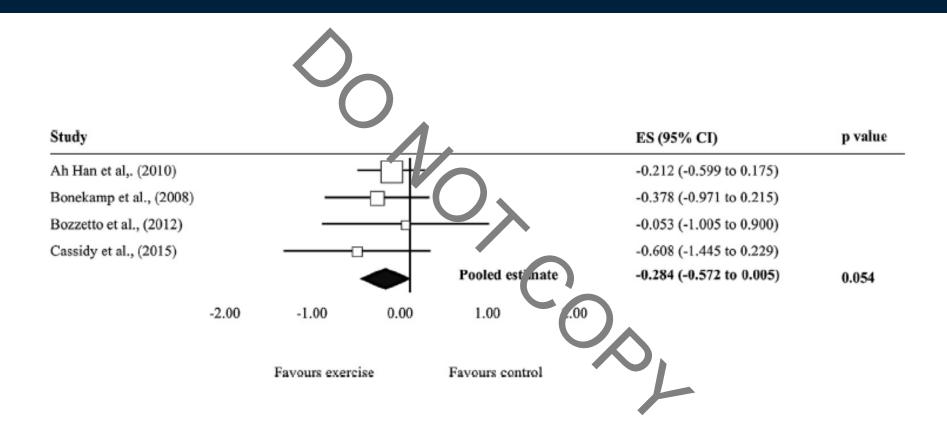
FIGURE 2. Mean (\pm SEM) weight change over time by treatment group (\bullet , standard behavior therapy group; \Box , high physical activity treatment group). *,**Significantly different from the HPA treatment group (SAS GLM procedure): *P = 0.07, **P = 0.04.

Effects of exercise training, without weight loss, on body fat



Lee et al (2005) J Appl Physiol 99:1220-1225

60 min moderate exercise, 5 x per week for 13 weeks


Exercise and visceral fat in type 2 diabetes: systematic review and meta-analysis

Sabag et al (2017) Diabetes & Metabolism 19:1446-1459

Exercise and liver fat in type 2 diabetes: systematic review and meta-analysis

Exercise training and intrahepatic TG in NAFLD: systematic review and meta-analysis

No significant weight loss

Significant weight loss

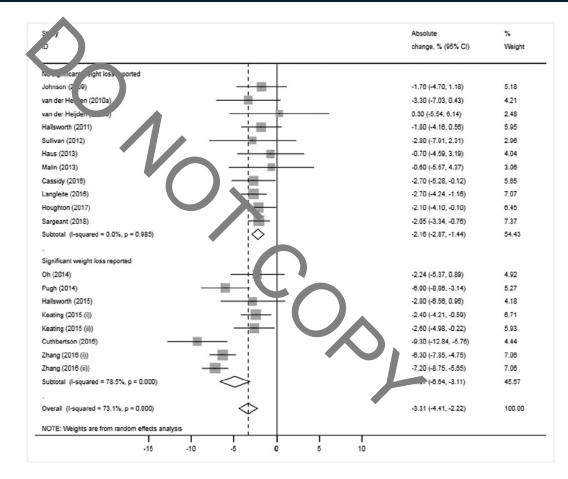
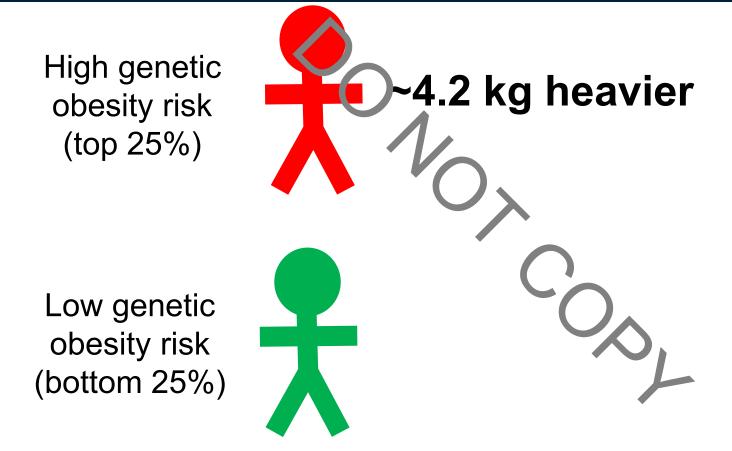
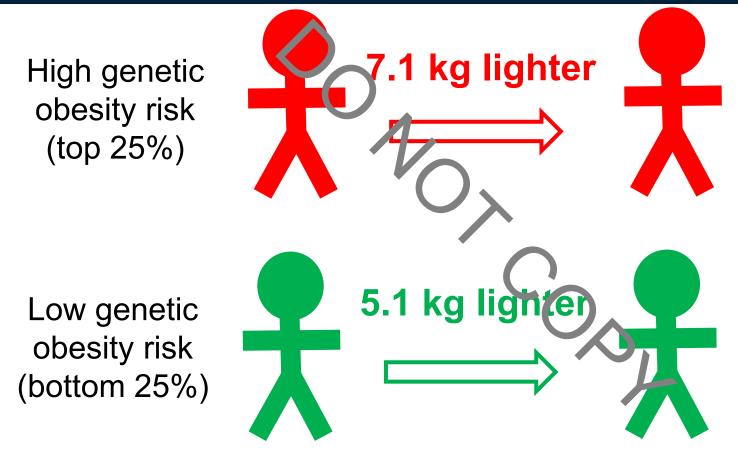


Figure 3 Meta-analysis of the pooled effect of exercise training on IHTG from pre-training to post-training in all exercise groups of all eligible studies when studies are grouped into those that elicited weight loss versus those that did not. IHTG, intrahepatic triglyceride; 95% CI, 95% confidence interval.


Sargeant et al (2018) Obesity Reviews 43:195-210

Is the relationship between physical activity and adiposity the same in everyone?



Physical activity, genetic predisposition to obesity and BMI in UK Biobank

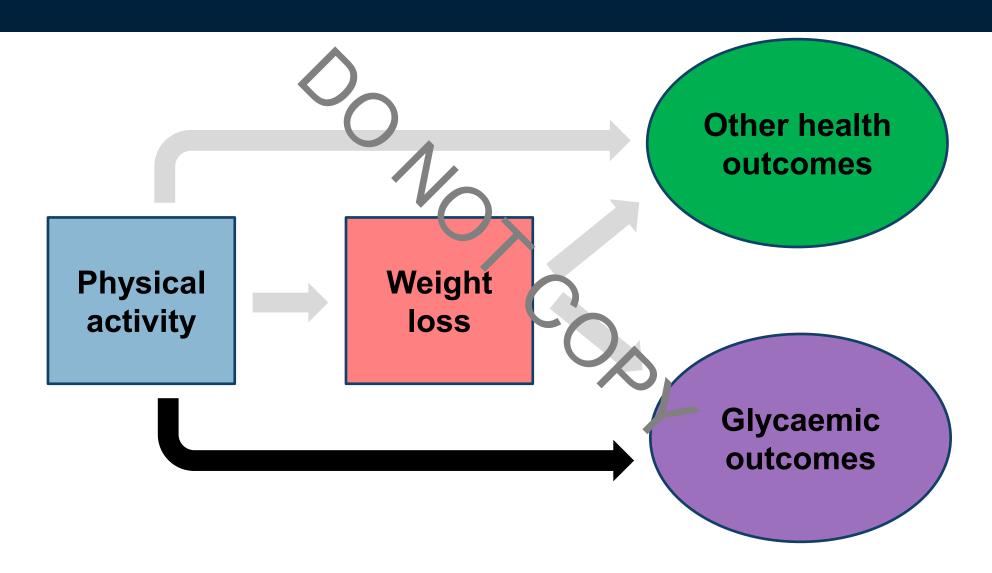
Physical activity, genetic predisposition to obesity and BMI in UK Biobank

Low physical activity (bottom 33%)

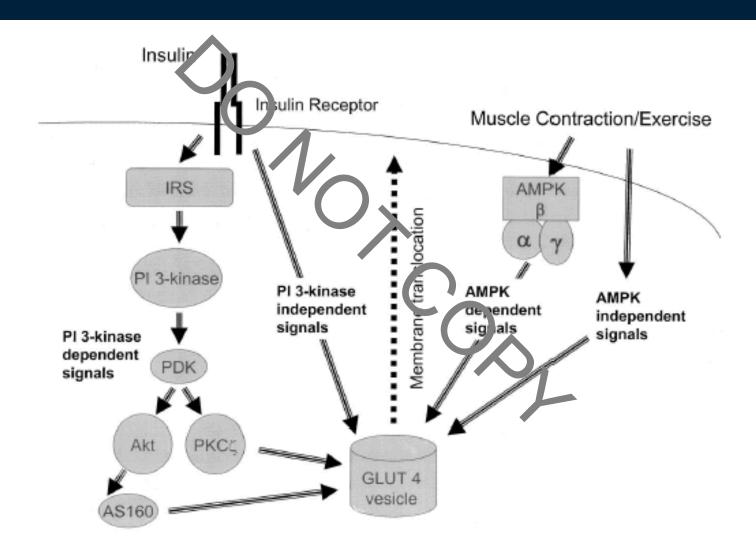
High physical activity (top 33%)

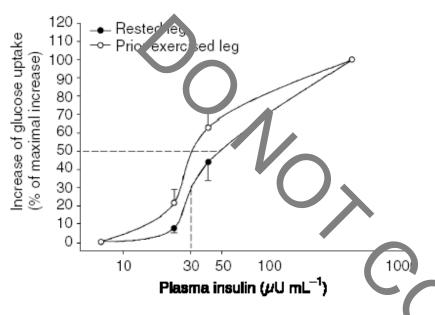
Celis-Morales et al (2019) Int J Obes https://doi.org/10.1038/s41366-019-0381-5

Benefits of being more physically active on body weight are greater in those with high genetic risk of obesity



Key messages Physical activity and weight loss


- Physical activity intervention alone has modest effects on bodyweight
- Effects of physical activity plus diet on bodyweight are greater than the effects of diet alone
- Even without weight loss, physical activity can substantially reduce body fat, visceral and liver fat the scales don't tell the full story
- Effects of physical activity on body weight are greater in those with high genetic predisposition to obesity


Contraction and insulin mediated glucose uptake

Krook et al (2004) Med Sci Sports Exerc 36:1212-17

Effects of prior exercise on insulinstimulated glucose uptake across the leg

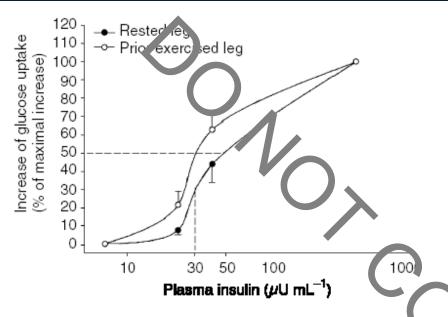
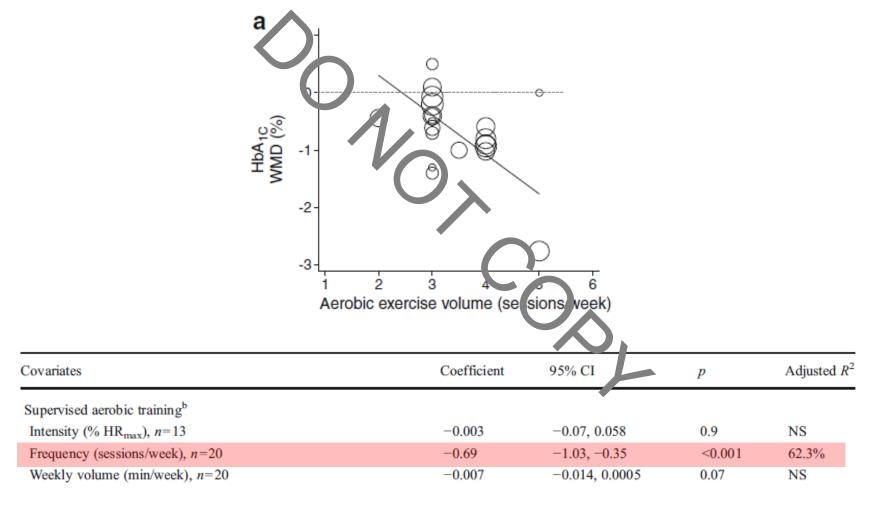


Figure 2 Exercise-improved insulin sensitivity of glucose uptake in human muscle. Prior one-legged exercise enhances sensitivity of glucose uptake to insulin in the exercised compared with the rested leg, in healthy human subjects as indicated by the decreased insulin concentration eliciting a half maximal glucose uptake response, when glucose uptake is given as percentage of maximal increase. The figure is reproduced from Wojtaszewski *et al.* (2002c) with permission. Data are extracted from Richter *et al.* (1989) and represent mean \pm SE for n = 6.

Data from Richter et al (1989) J Appl Physiol 66:876-885

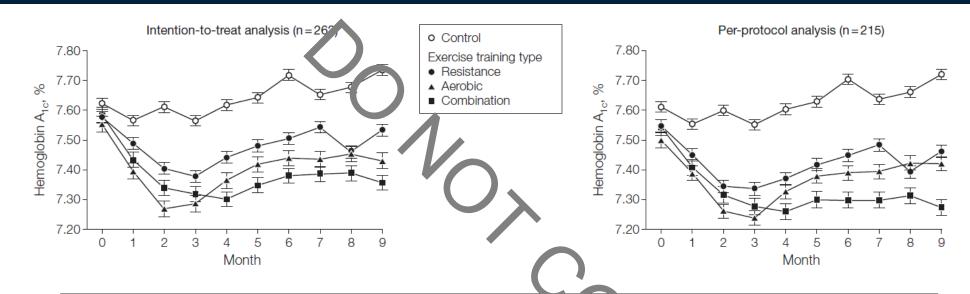
Effects of prior exercise on insulinstimulated glucose uptake across the leg

Figure 2 Exercise-improved insulin sensitivity of glucose uptake in human muscle. Prior one-legged exercise enhances sensitivity of glucose uptake to insulin in the exercised compared with the rested leg, in healthy human subjects as indicated by the decreased insulin concentration eliciting a half maximal glucose uptake response, when glucose uptake is given as percentage of maximal increase. The figure is reproduced from Wojtaszewski *et al.* (2002c) with permission. Data are extracted from Richter *et al.* (1989) and represent mean \pm SE for n = 6.


Acute effect:

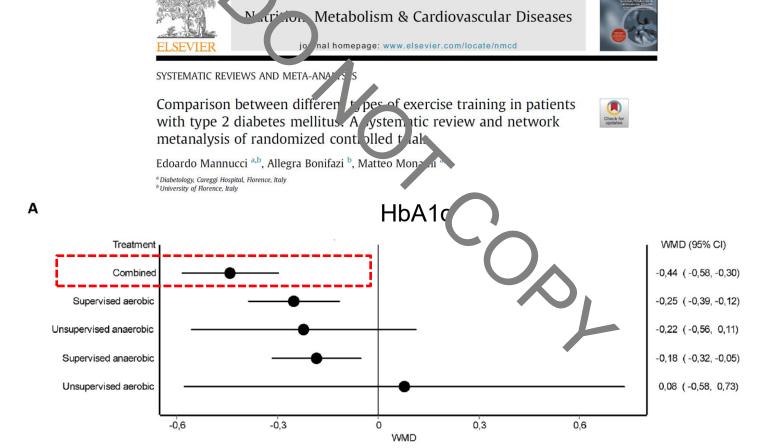
- Present for ~48-72 hours
- Enhanced by exercise training

Data from Richter et al (1989) J Appl Physiol 66:876-885



Effects of supervised exercise training on glycaemic control in T2D: a meta-regression

Aerobic training, resistance training or both on glycaemic control in type 2 diabetes



- Control group (n = 41) no exercise
- Aerobic training group (n = 72) 12 kcal/kg/week aerobic exercise over 3 sessions/week
- Resistance training group (n = 73) 2-3 sets of 9 resistance exercises 3 x per week
- Combined training group (n = 76) 12 kcal/kg/week aerobic exercise over 3 sessions/week PLUS 1 set of 9 resistance exercises in each session

SIMILAR EXERCISE TIME FOR THE 3 INTERVENTION GROUPS (~130-150 MIN/WEEK)

Comparison of different exercise types in patients with T2D: systematic review and network metaanalysis

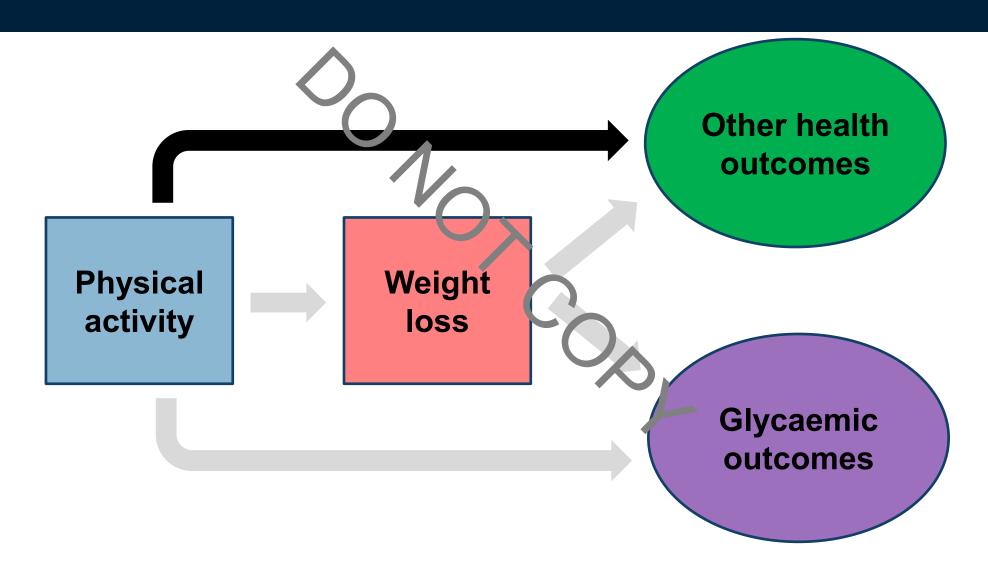
Available online at www.sciencedirect.com

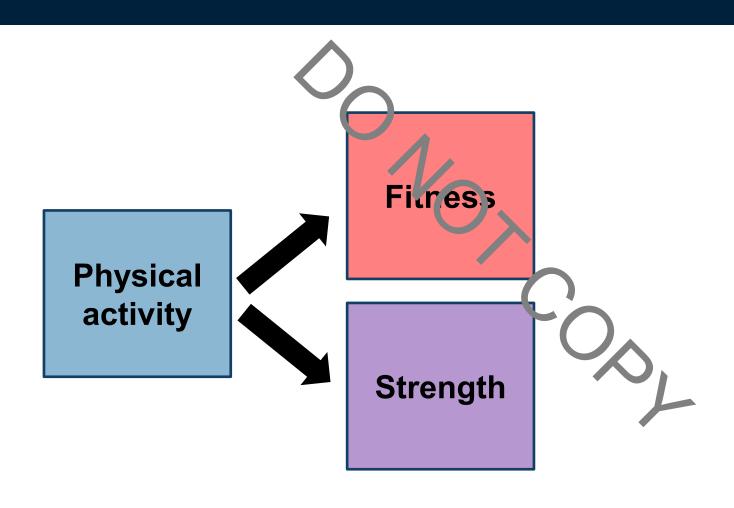
Nutrition, Metabolism & Cardiovascular Diseases (2021) 31, 1985–1992

Consistency H: 1.00

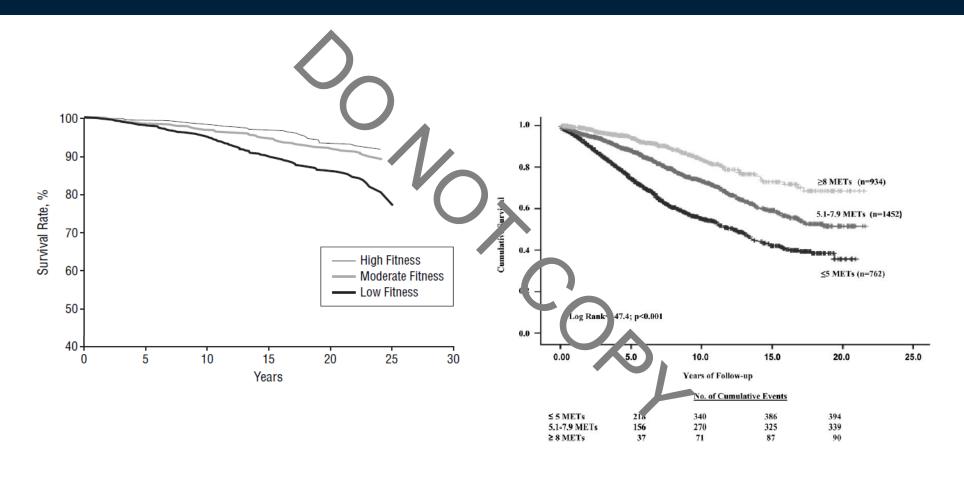
Mannucci et al (2021) Nutr Metab Cardiovasc Dis 31:1985-1993

ACSM/ADA recommendations for Physical activity in treatment of type 2 diabetes

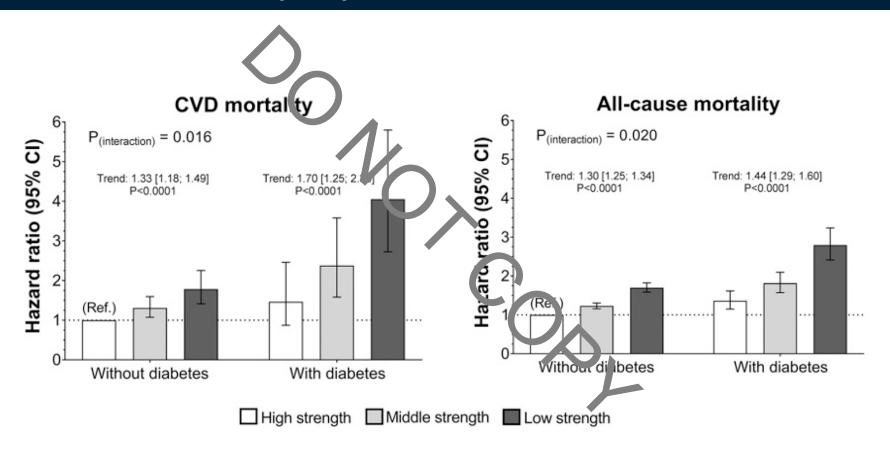

- Persons with type 2 diabetes should undertake at least 150 min/week of moderate to vigorous aerobic exercise spread out during at least 3 days during the week, with no more than 2 consecutive days between bouts of aerobic activity.
- In addition to aerobic training, persons with type 2 diabetes should undertake moderate to vigorous resistance training at least 2–3 days/week.
- Supervised and combined aerobic and resistance training may confer additional health benefits, although milder forms of PA (such as yoga) have shown mixed results.
 Persons with type 2 diabetes are encouraged to increase their total daily unstructured PA. Flexibility training may be included but should not be undertaken in place of other recommended types of PA.


Key messages Physical activity and glycaemic control

- Exercise acutely improves insulin sensitivity for 48-72 hours
- Frequency of physical activity is more important than intensity or volume for effects on HbA1c in patients with type 2 diabetes
- A combination of aerobic and resistance exercise is more effective for HbA1c reduction in patients type 2 diabetes than either type of exercise alone



Fitness and risk of CVD mortality in patients with type 2 diabetes

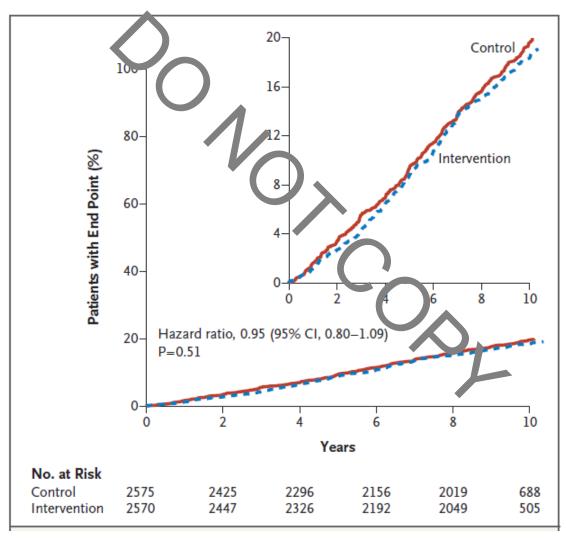


Church et al (2005) Arch Intern Med, 165:2114-2120

Kokkinos et al (2009) Diabetes Care, 32:623-628

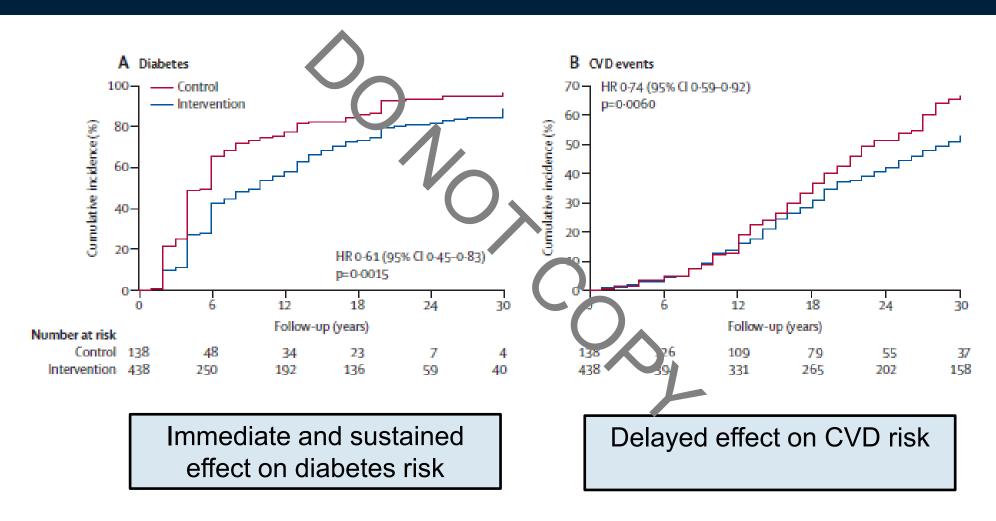
Grip strength and risk of CVD and all-cause mortality in people with and without T2D

The NEW ENGLAND JOURNAL of MEDICINE

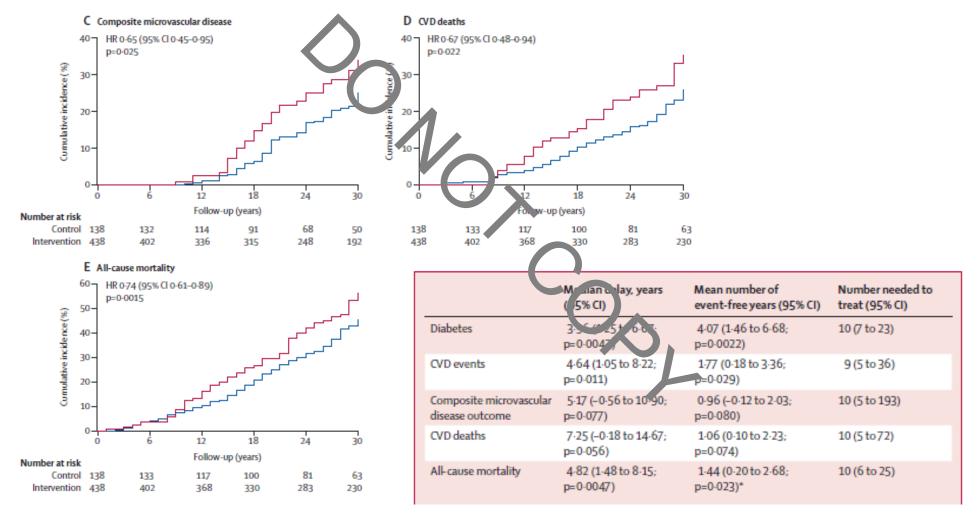

ORIG NALARTICLE

Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes

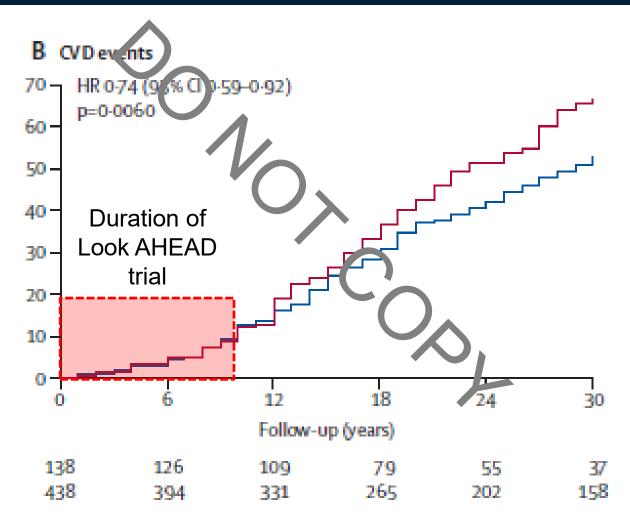
The Look AHEAD Research Group*


Long-term effects of lifestyle intervention on CVD events in type 2 diabetes: the Look AHEAD trial

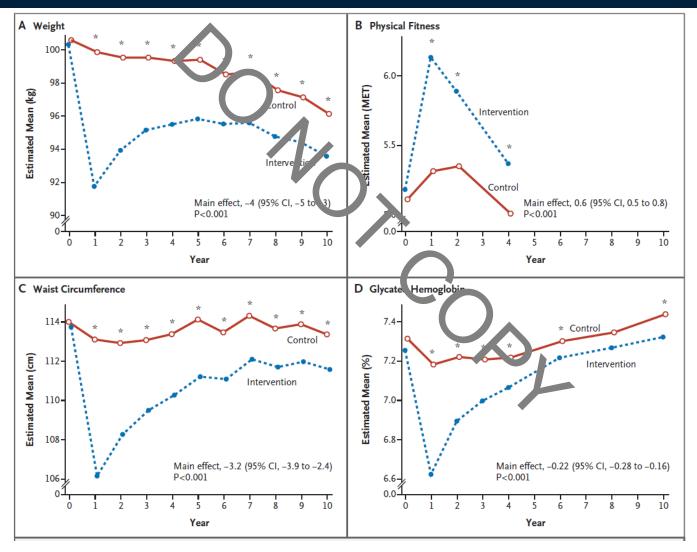
The Look AHEAD Research Group (2013) NEJM, 369(2):145-54



Morbidity and mortality after lifestyle intervention in people with IGT: The Da Qing Study 30-year follow-up


Morbidity and mortality after lifestyle intervention in people with IGT: The Da Qing Study 30-year follow-up

Gong et al (2019) Lancet Diabetes Endo, 7:452-461


Morbidity and mortality after lifestyle intervention in people with IGT: The Da Qing Study 30-year follow-up

Gong et al (2019) Lancet Diabetes Endo, 7:452-461

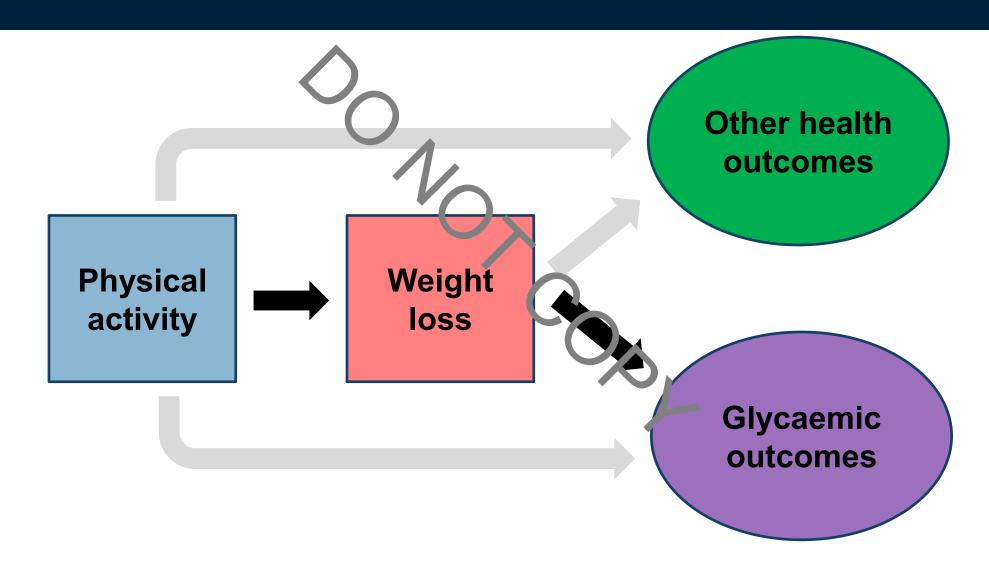
Long-term effects of lifestyle intervention on weight & CVD risk in type 2 diabetes: the Look AHEAD trial

The Look AHEAD Research Group (2013) NEJM, 369(2):145-54

Magnitude of change weight loss and change in fitness and CVD outcomes in the Look AHEAD trial

	Weight-change cateo vies (percentage weight loss in first year; n=4834)					Fitness-change categories (change in metabolic equivalents in first year; n=4406)				
	Gain or stable (<2% loss)	Small loss (≥2-<5%)	Mediu 1 loss (≥5-<1 %)	Large loss (≥10%)	p value	Loss or stable (<0.5 loss)	Small gain (≥0·5-<1·0)	Medium gain (≥1·0-<2·0)	Large gain (≥2·0)	p value
Primary outcome										
Events per person-years	289/17 075	141/7870	154/857	128(8942		347/19 997	95/6091	102/7183	72/5312	
Crude rate per 100 person-years	1.69	1.79	1.80	1.47		1.74	1.56	1.42	1.36	
Unadjusted hazard ratio (95% CI)	1.00	1·07 (0·88-1·31)	1-07 (0-88-1-31)	0.83 67-1.07	0-21	1-00	0.88 (0.70–1.10)	0·80 (0·64-1·00)	0·76 (0·59-0·98), p=0·032*	0-009
Adjusted hazard ratio†(95% CI)	1.00	1·08 (0·88-1·33)	1·16 (0·95–1·42)	0·79 (0·64-0·98), p=0·034*	0-17	1-00	0.87 (0.68 – 1.10)	0-83 (0-66–1-05)	0·78 (0·60–1·03), p=0·079*	0-03
Secondary outcome										
Events per person-years	422/16699	206/7657	203/8411	186/8792		504/. 9596	131/5996	145/7056	100/5220	
Crude rate per 100 person-years	2.53	2.69	2.41	2.12		2.5	2.18	2.05	1.92	
Unadjusted hazard ratio (95% CI)	1.00	1·08 (0·91-1·27)	0-96 (0-81-1-13)	0·83 (0·70–0·99), p=0·035*	0-04	1.0	0.83 0.69-1.01)	0·79 (0·65–0·95), p=0·012*	0·73 (0·59-0·91), p-0·005*	0-0005
Adjusted hazard ratio† (95% CI)	1.00	1·05 (0·88-1·25)	0·97 (0·82 - 1·16)	0·76 (0·63-0·91), p=0·003*	0-006	1.00	0·84 (0·69–1·02)	0·79 (0·65-0·96), p=0·019*	0·77 (0·61–0·96), p=0·023*	0.0031

Data are for the overall study population (intensive lifestyle intervention and diabetes support and education [control] groups combined). *p value refers to pairwise comparison with referent group (gain or stable weight loss in weight-change analyses and loss or stable fitness gain in fitness change analyses). †Adjusted for sex, age, baseline weight (from weight-change models), baseline fitness (from fitness-change models), history of cardiovascular disease, insulin use, diabetes duration, smoking status, LDL cholesterol, systolic blood pressure, and diastolic blood pressure.


Table 2: Primary and secondary outcomes associated with changes in weight and fitness (overall study population)

Key messages Physical activity and other health outcomes

- High cardiorespiratory fitness and high muscular strength are associated with lower risk of mortality in patients with type 2 diabetes
- In Look Ahead, participants who increased cardiorespiratory fitness reduced incidence of adverse CVD outcomes
- We need to develop better interventions to help support people to sustain long-term behaviour change (years to decades)

Can diabetes remission be achieved through lifestyle interventions focused on physical activity?

U-TURN – Secondary analysis for diabetes remission at 12 and 24 months

Received: 11 April 2019 Revised: 23 May 2019 Accepted: 2 June 2019

DOI: 10.1111/dom.13802

ORIGINAL ARTICLE

Type 2 diabetes remission 1 year after an intensive of cyle intervention: A secondary analysis of a randomized clinical tria

¹Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Righospitalet, University of Copenhagen, Copenhagen, Denmark

²CopenRehab, Section of Social Medicine, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

³Musculoskeletial Statistics Unit, Parker Institute, Biopelejer, and Frederinisberg-Hospital, Copenhagen, Dermark

4 Parametri Linit of Pharmatology Department of Claired Parametri Southern Department Southern Departme

⁵Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden

⁶Department of Clinical Pharmacology, Bispebierg Hospital, University of Copenhagen, Copenhagen, Denmari

Bente K. Pedersen DMSc1 | Kristian Karstoft PhD1,6

Correspondence

Mathias Ried-Larsen, Phd, Rigshospitalet 7641, Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Blegdamsvej 9, Copenhagen 2100, Denmark Email: mathias.ried-larsen@regionh.dk

Funding information

This project was funded by TrygFonden. The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. The Centre for Inflammation and Metabolism/CFAS is a member of the Danish Centre for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, grants 09-067009 and 09-075724). The Contour Next glucose monitors were provided by Bayer A/S, Copenhagen, Denmark s work was also supported by a grant from Rigshospitalet (Mette Yun Johansen). The inders had no role in design and conduct of the study; collection, analysis, and interpretation of the data; preparation, review or approval of the manuscript, or decision to submit the manuscript for publication.

Peer Peview

The peer review history for this article is available at https://publons.com/publon/10.1111/dom.13802.

Abstract

Aim: To investigate whether an intensive lifestyle intervention induces partial or complete type 2 diabetes (T2D) remission.

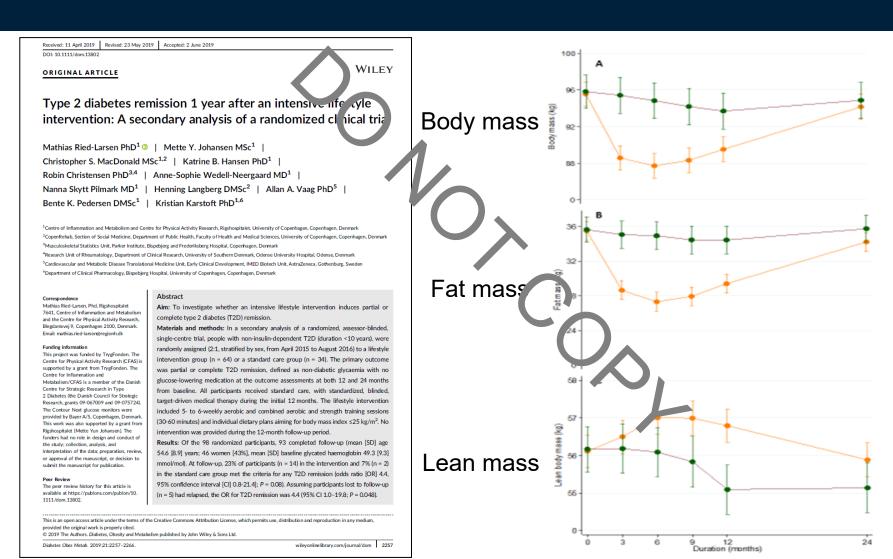
Materials and methods: In a secondary analysis of a randomized, assessor-blinded, single-centre trial, people with non-insulin-dependent T2D (duration <10 years), were randomly assigned (2:1, stratified by sex, from April 2015 to August 2016) to a lifestyle intervention group (n = 64) or a standard care group (n = 94). The primary outcome was partial or complete T2D remission, defined as non-diabetic glycaemia with no glucose-lowering medication at the outcome assessments at both 12 and 24 months from baseline. All participants received standard care, with standardized, blinded, target-driven medical therapy during the initial 12 months. The lifestyle intervention included 5- to 6-weekly aerobic and combined aerobic and strength training sessions (30-60 minutes) and individual dietary plans aiming for body mass index \$25 kg/m². No intervention was provided during the 12-month follow-up period.

Results: Of the 98 randomized participants, 93 completed follow-up (mean [SD] age 54.6 [8.9] years; 46 women [43%], mean [SD] baseline glycated haemoglobin 49.3 [9.3] mmol/mol). At follow-up, 23% of participants (n = 14) in the intervention and 7% (n = 2) in the standard care group met the criteria for any T2D remission (odds ratio [OR] 4.4, 95% confidence interval [CI] 0.8-21.4]; P = 0.08). Assuming participants lost to follow-up (n = 5) had relapsed, the OR for T2D remission was 4.4 (95% CI 10-19.8); P = 0.048).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

Diabetes Obes Metab. 2019;21:2257-2266


wileyonlinelibrary.com/journal/dom 2257

WILEY

- 98 T2DM patients with <10 years disease duration, HbA1c ≤ 56 mmol/mol and not on insulin
- Randomised 2:1 into lifestyle intervention (n = 64) or standard care (n = 34).
 - All received standardised blinded targetdriven medical therapy during first 12 months
- Lifest/le intervention group received:
 - 5-0 sessions/week of aerobic & strength training (35-60 mins/session) for 12 months.
 - Diet plan with energy intake restriction for first 4 months (followed by energy balance diet).
- No intervention provided after 12 months

U-TURN – Secondary analysis for diabetes remission at 12 and 24 months

U-TURN – Secondary analysis for diabetes remission at 12 and 24 months

Received: 11 April 2019 Revised: 23 May 2019 Accepted: 2 June 2019 WILEY ORIGINAL ARTICLE Type 2 diabetes remission 1 year after an intensive of earlier intervention: A secondary analysis of a randomized clinical tria Mathias Ried-Larsen PhD¹ Mette Y. Johansen MSc¹ Christopher S. MacDonald MSc^{1,2} | Katrine B. Hansen PhD¹ Robin Christensen PhD^{3,4} | Anne-Sophie Wedell-Neergaard MD¹ Nanna Skytt Pilmark MD¹ | Henning Langberg DMSc² | Allan A. Vaag PhD⁵ Bente K. Pedersen DMSc¹ | Kristian Karstoft PhD^{1,6} Centre of Inflammation and Metabolism and Centre for Physical Activity Research Riesbosnitalet University of Conenhagen Conenhagen Denmark ²CopenRehab, Section of Social Medicine, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmar loskeletal Statistics Unit, Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmar ⁴Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmar 5 Cardinyascular and Metabolic Disease Translational Medicine Unit. Farly Clinical Development. IMFD Riotech Unit. AstraZeneca. Gothenburg. Sweder ⁶Department of Clinical Pharmacology, Bispebierg Hospital, University of Copenhagen, Copenhagen, Denmark Mathias Ried-Larsen, Phd, Rigshospitalet Aim: To investigate whether an intensive lifestyle intervention induces partial o 7641, Centre of Inflammation and Metabolism complete type 2 diabetes (T2D) remission. and the Centre for Physical Activity Research. Bleedamsvei 9, Copenhagen 2100, Denmark, Materials and methods: In a secondary analysis of a randomized, assessor-blinded Email: mathias.ried-larsen@regionh.dk single-centre trial, people with non-insulin-dependent T2D (duration <10 years), were Funding information randomly assigned (2:1, stratified by sex, from April 2015 to August 2016) to a lifestyle This project was funded by TrygFonden. The Centre for Physical Activity Research (CFAS) is intervention group (n = 64) or a standard care group (n = 34). The primary outcome supported by a grant from TrygFonden. The was partial or complete T2D remission, defined as non-diabetic glycaemia with no Centre for Inflammation and glucose-lowering medication at the outcome assessments at both 12 and 24 months Metabolism/CFAS is a member of the Danish Centre for Strategic Research in Type from baseline. All participants received standard care, with standardized, blinded, 2 Diabetes (the Danish Council for Strategic target-driven medical therapy during the initial 12 months. The lifestyle intervention Research, grants 09-067009 and 09-075724). The Contour Next glucose monitors were provided by Bayer A/S, Copenhagen, Denmark s work was also supported by a grant from

The peer review history for this article is available at https://publons.com/publon/10 1111/dom.13802.

Rigshospitalet (Mette Yun Johansen). The

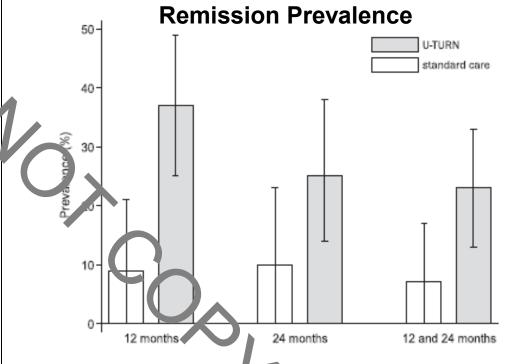
the study: collection, analysis, and interpretation of the data; preparation, review

nders had no role in design and conduct of

or approval of the manuscript, or decision to

submit the manuscript for publication.

(30-60 minutes) and individual dietary plans aiming for body mass index ≤25 kg/m². No intervention was provided during the 12-month follow-up period.


Results: Of the 98 randomized participants, 93 completed follow-up (mean [SD] age 54.6 [8.9] years: 46 women [43%], mean [SD] baseline glycated haemoglobin 49.3 [9.3] mmol/mol). At follow-up, 23% of participants (n = 14) in the intervention and 7% (n = 2) in the standard care group met the criteria for any T2D remission (odds ratio [OR] 4.4. 95% confidence interval [CI] 0.8-21.4]: P = 0.08). Assuming participants lost to follow-up (n = 5) had relapsed, the OR for T2D remission was 4.4 (95% CI 1.0-19.8; P = 0.048).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium

2019 The Authors, Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd

Diabetes Obes Metab. 2019:21:2257-2266

wilevonlinelibrary.com/journal/dom 2257

23% of intervention group and 7% of control group achieved remission* at 12 & 24 months. Odds Ratio 4.4 (0.8-21.4), p = 0.08.

*HbA1c <48 mmol/mol with no glucose lowering medication

U-TURN

Received: 11 April 2019 Revised: 23 May 2019 Accepted: 2 June 2019

ORIGINAL ARTICLE

Type 2 diabetes remission 1 year after an intensive of earlier intervention: A secondary analysis of a randomized clinical tria

Mathias Ried-Larsen PhD¹ Mette Y. Johansen MSc¹

Christopher S. MacDonald MSc^{1,2} | Katrine B. Hansen PhD¹

Robin Christensen PhD^{3,4} | Anne-Sophie Wedell-Neergaard MD¹

Nanna Skytt Pilmark MD¹ | Henning Langberg DMSc² | Allan A. Vaag PhD⁵

Bente K. Pedersen DMSc¹ | Kristian Karstoft PhD^{1,6}

¹Centre of Inflammation and Metabolism and Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark

²CopenRehab, Section of Social Medicine, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark sculoskeletal Statistics Unit, Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmar

⁴Research Unit of Rheumatology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark

5 Cardiovascular and Metabolic Disease Translational Medicine Unit. Early Clinical Development. IMFD Riotech Unit. AstraZeneca. Gothenhurz. Sweden

⁶Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark

Mathias Ried-Larsen, Phd, Rigshospitalet 7641, Centre of Inflammation and Metabolism and the Centre for Physical Activity Research. Bleedamsvei 9, Copenhagen 2100, Denmark, Email: mathias.ried-larsen@regionh.dk

Funding information

This project was funded by TrygFonden. The Centre for Physical Activity Research (CFAS) is supported by a grant from TrygFonden. The Centre for Inflammation and Metabolism/CFAS is a member of the Danish Centre for Strategic Research in Type 2 Diabetes (the Danish Council for Strategic Research, grants 09-067009 and 09-075724). The Contour Next glucose monitors were provided by Bayer A/S, Copenhagen, Denmark is work was also supported by a grant from Rigshospitalet (Mette Yun Johansen). The unders had no role in design and conduct of the study: collection, analysis, and interpretation of the data: preparation, review or approval of the manuscript, or decision to submit the manuscript for publication.

The peer review history for this article is available at https://publons.com/publon/10. 1111/dom.13802.

Aim: To investigate whether an intensive lifestyle intervention induces partial or complete type 2 diabetes (T2D) remission.

Materials and methods: In a secondary analysis of a randomized, assessor-blinded, single-centre trial, people with non-insulin-dependent T2D (duration <10 years), were randomly assigned (2:1, stratified by sex, from April 2015 to August 2016) to a lifestyle intervention group (n = 64) or a standard care group (n = 34). The primary outcome was partial or complete T2D remission, defined as non-diabetic glycaemia with no glucose-lowering medication at the outcome assessments at both 12 and 24 months from baseline. All participants received standard care, with standardized, blinded, target-driven medical therapy during the initial 12 months. The lifestyle intervention included 5- to 6-weekly aerobic and combined aerobic and strength training sessions (30-60 minutes) and individual dietary plans aiming for body mass index ≤25 kg/m². No intervention was provided during the 12-month follow-up period.

Results: Of the 98 randomized participants, 93 completed follow-up (mean [SD] age 54.6 [8.9] years; 46 women [43%], mean [SD] baseline glycated haemoglobin 49.3 [9.3] mmol/mol). At follow-up, 23% of participants (n = 14) in the intervention and 7% (n = 2) in the standard care group met the criteria for any T2D remission (odds ratio [OR] 4.4, 95% confidence interval [CI] 0.8-21.4]: P = 0.08). Assuming participants lost to follow-up (n = 5) had relapsed, the OR for T2D remission was 4.4 (95% CI 1.0-19.8; P = 0.048).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium provided the original work is properly cited

© 2019 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.

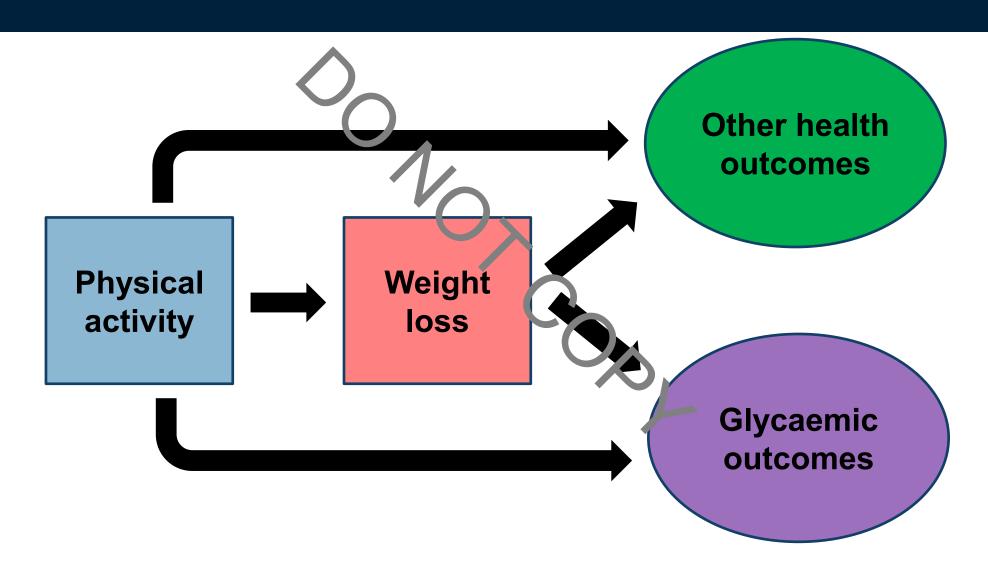
Diabetes Obes Metab. 2019:21:2257-2266

wilevonlinelibrary.com/journal/dom 2257

WILEY

Remission associated with:

- Greater reduction in fat mass
- Greater reduction in abdominal fat mass
- Achieving 10% body weight reduction
- Greater increases in cardiorespiratory fitness


Ried-Larsen et al (2019) Diabetes Obes Metab 21:2257-2266

Key messages Physical activity, weight and glycaemic control

- With an intense erlough exercise-focused intervention, substantial weight loss is possible, leading to diabetes remission in some
- This approach may be appealing to some (probably a minority) of patients with type 2 diabetes

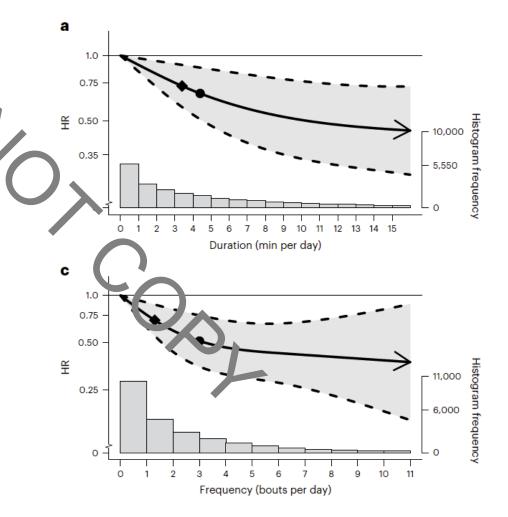
Device-measured VILPA and risk of mortality

Association of wearable device-mer sured vigorous intermittent lifestyle physical activity with mortality

Received: 3 March 2022

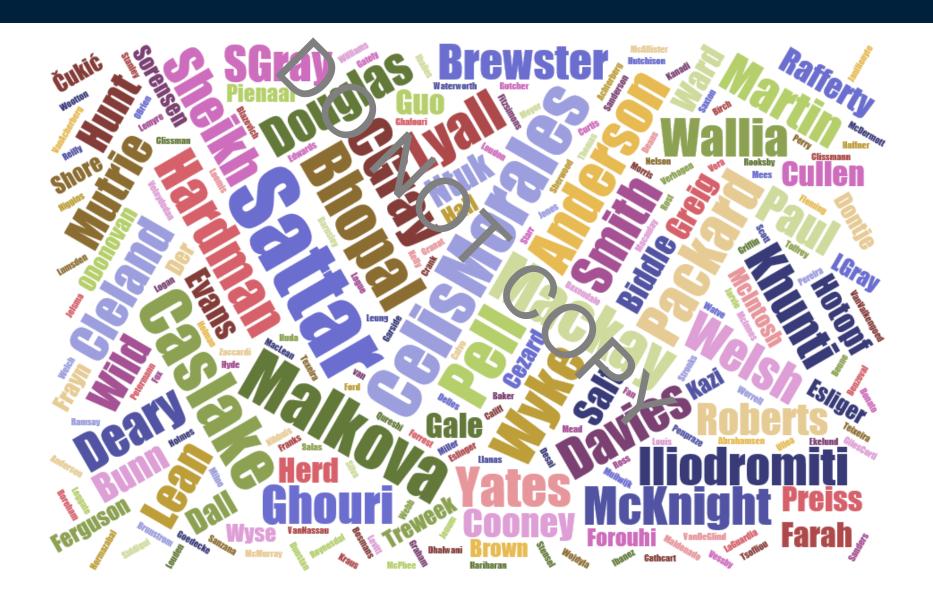
Accepted: 21 October 2022

Published online: 8 December 2022


Check for updates

Emmanuel Stamatakis @1 Matthew N. Ahmadi @1, Jason M. R. Gill @2. Cecilie Thøgersen-Ntoumani3, Martin J. Gibala4, Aiden Doherty5 & Mark Hamer O 6

Wearable devices can capture unexplored movement patterns such as brief bursts of vigorous intermittent lifestyle physical activity (VILPA) that is embedded into everyday life, rather than being done as leisure time exercise. Here, we examined the association of VILPA with all-cause. cardiovascular disease (CVD) and cancer mortality in 25,241 nonexercisers (mean age 61.8 years, 14,178 women/11,063 men) in the UK Biobank. Over an average follow-up of 6.9 years, during which 852 deaths occurred, VILPA was inversely associated with all three of these outcomes in a near-linear fashion. Compared with participants who engaged in no VILPA, participants who engaged in VILPA at the sample median VILPA frequency of 3 length-standardized bouts per day (lasting 1 or 2 min each) showed a 38%-40% reduction in all-cause and cancer mortality risk and a 48%-49% reduction in CVD mortality risk. Moreover, the sample median VILPA duration of 4.4 min per day was associated with a 26%-30% reduction in all-cause and cancer mortality risk and a 32%-34% reduction in CVD mortality risk. We obtained similar results when repeating the above analyses for vigorous physical activity (VPA) in 62,344 UK Biobank participants who exercised (1,552 deaths, 35,290 women/27,054 men). These results indicate that small amounts of vigorous nonexercise physical activity are associated with substantially lower mortality. VILPA in nonexercisers appears to elicit similar effects to VPA in exercisers, suggesting that VILPA may be a suitable physical activity target, especially in people not able or willing to exercise.


Physical activity is associated with reduced mortality risk¹, and reduced activity (≥6 metabolic equivalents) per week. New emphasis is placed risk of CVD¹ and certain cancers²⁻⁴. Recently updated guidelines^{4,5}, based on 'all activity counts' occurring across all life domains and regardless mostly on questionnaire-derived evidence, recommend 150-300 min of of bout duration. This recommendation contrasts with previous guidemoderate-intensity activity or 75–150 min of vigorous-intensity physical lines 67 that did not recognize the health value of physical activity bouts

'Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK. ³Danish Centre for Motivation and Behaviour Science, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark. Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada. Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK. Pinstitute Sport Exercise Health, Division Surgery Interventional Science, University College London, London, UK. Me-mail: emmanuel.stamatakis@sydney.edu.au

Acknowledgments

