

Education is not a singular inoculation

A change of science is a foot.....

...thus a change of GP LTC review infrastructure is a must

CARDIOVASCULAR-KIDNEY-METABOLIC REVIEW

THE NEW LONG TERM CONDITION FRAMEWORK OF CARE FOR OUR HOUSES OF CARE

Northern Ireland Primary Care Diabetes and Chesit, Society 25th September 2025

Dr Eimear Parcy

NHS GP Partner

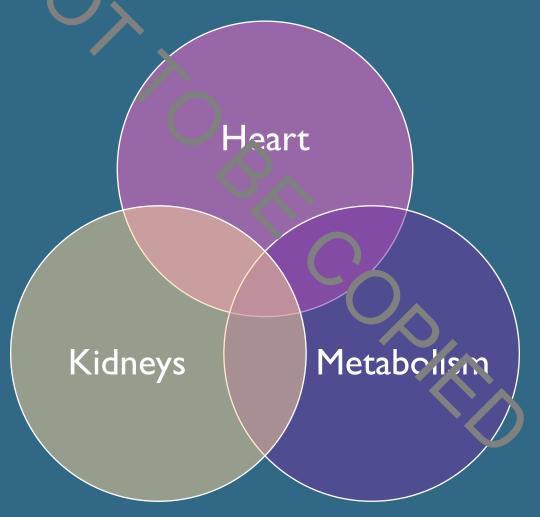
MB BCH BAO DMH MRCGP (2017)

PG Cert Diabetes (Distinction)

SCOPE certified in Obesity Management.

General Practitioner specialising in CKM

Learning Objectives


OFFICIALLY.

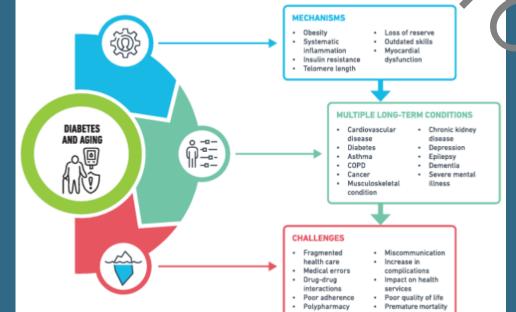
Insights into modern management of CKM Long Term Conditions

PERSONALLY...

CVRM = CKM = CAREME/CRM

Multiple Long Term Conditions (MTLCs)

Diabetes Care. A. American Diabetes Care. Association.



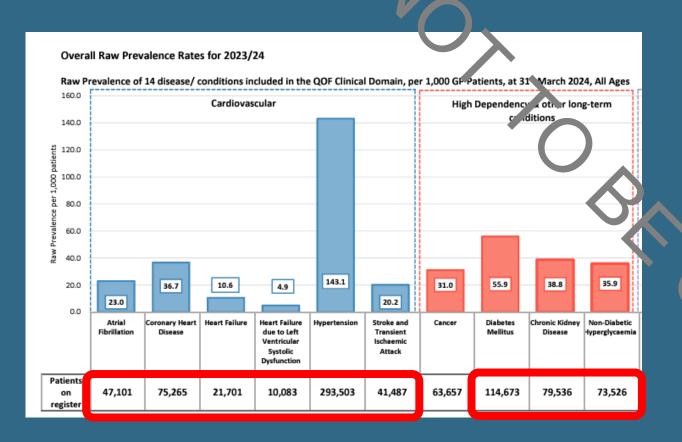
Diabetes and Multiple Long-term Conditions: A Review of Our **Current Global Health Challenge**

Kamlesh Khunti, Yogini V. Chudasama, Edward W. Gregg, Monika Kamkuemah, Sh Nikhil S. Venkateshmurthy, and Jonathan Valabhji

Diabetes Care 2023;46(12);2092-2101 | https://doi.org/10.2337/dci23-0035

Diabetes and Multiple Long-term Conditions: A Review of Our Current Global Health Challenge

Received: 17 March 2020 Revised: 15 April 2020 Accepted: 29 April 2020 DOI: 10.1111/dom.14074


ORIGINAL ARTICLE

WILEY

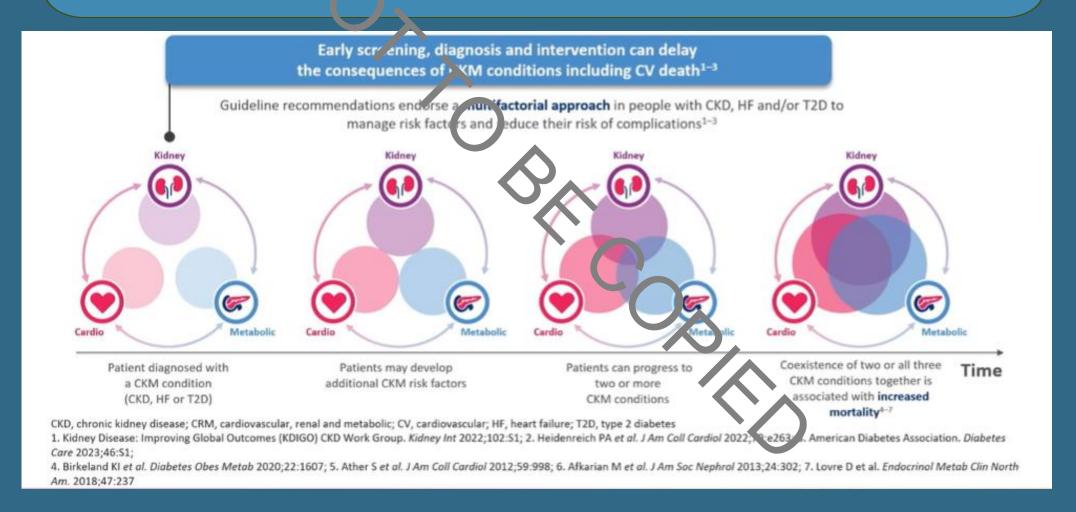
Heart failure and chronic kidney disease manifestation and mortality risk associations in type 2 diabetes: A large multinational cohort study

Conclusion: in a large multinational study of >750 000 CVRD-free patients with T2D, HF and CVD here consistently the most frequent first cardiovascular disease manifestations and were also associated with increased mortality risks. These novel findings show these cardiorenal diseases to be important and serious complications requiring improved preventive shategies.

Northern Ireland overall raw prevalence rates for 2023/24

	2013/14	2023/24
Diabetes	81,867	114,673

Difference of 32806 people


The minority of our population is not living with every reight or obesity (2)

CKM syndrome - Groundhog day for disease **B**-cell dysfunction Insulin resistance SNS and RAAS overactivation Hyperglycemia NPs relative deficiency Oxidative stress Chronic inflammation Lipo-glucot xicity **Endothelial dysfunction** Oxidative stress Metabolic dysfunction Endothelial dysfunction Atherosclerosis Myocardial dysfunction Chronic inflammation Heart failure Vitamin D deficiency SHARED RISK FACTORS **Uremic toxins** AND BI-DIRECTIONAL RELATIONSHIPS GALORE Cardiovascular dysfunction Low cardiac output Vasoconstrictive mediators Na and H2O retention **RAAS** overactivation **Uremic toxins** Impaired renal function Chronic inflammation

Early and multifactorial intervention is the best way to help protect by reducing the amplifying risks associated with terconnected CKM diseases

CARDIOVASCULAR-KIDNEY-METABOLIC SYNDROME

Health disorder due to connections amount

- Heart disease
- Kidney Disease
- Type Two Diabetes
- Obesity

Leading to poor health outcomes

Circulation

Volume 148, Issue 20, 14 November 2023; Pages 1606-1635 https://doi.org/10.1161/CIR.000000000001184

AHAPPESIDENTIAL ADVISORIES

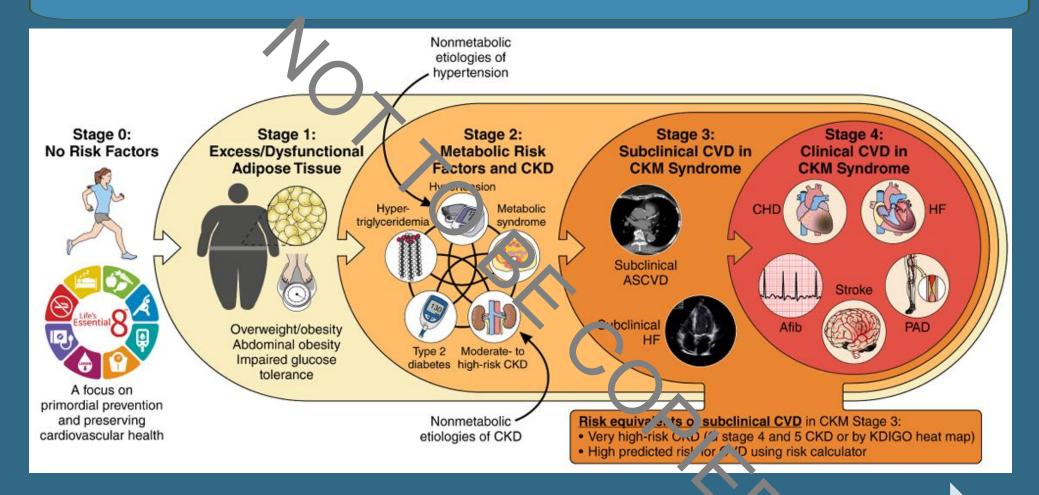
Cardiovas cult r-Kidney-Metabolic Health: A Presidential Advisory From the American Heart Association

CKM syndrome – medical definition

"...a systemic disorder characterises by pathophysiological interactions among <u>metabolic</u> risk factors, <u>CKD</u>, and <u>CV</u> system leading to multi-organ dysfunction and a high rate of <u>adverse CV</u> outcomes."

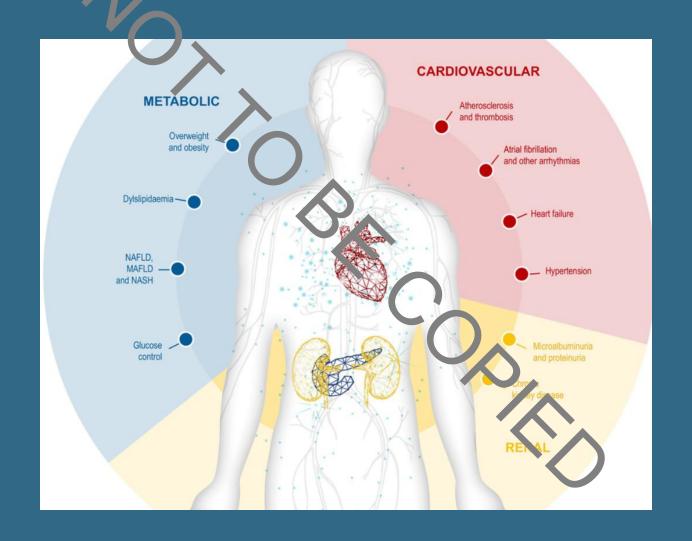
Includes individuals:

At risk for CVD disease due to metabolic risk factors.


Those with CVD

Those with CKD

General Practice CKM Review along the life journey



..AND IN THE CONTEXT OF THE PERSONS LIFE STORY

Every stage sits in General Practice

CKM - CARE OF PEOPLE, NOT JUST PATHOLOGY

Vora J, Cherney D, Kosiborod MN, Spaak J, Kanumilli N, Khunti K, et al. Inter-relationships between cardiovascular, renal and metabolic diseases: Underlying evidence and implications for integrated interdisciplinary care and management. Diabetes, Obesity and Metabolism. 2024;26(5):1567–81.

HOLISTIC IMPLEMENTATION

adjective

UK ◀》 /həˈlɪs.tɪk/ US ◀》 /hoʊlˈɪs.tɪk/

Add to word list **:**≡

dealing with or treating the whole of something or someone and not just a part:

consensus statement

Clinical staging to guide management of metabolic disorders and their sequelae: a European Atherosclerosis Society

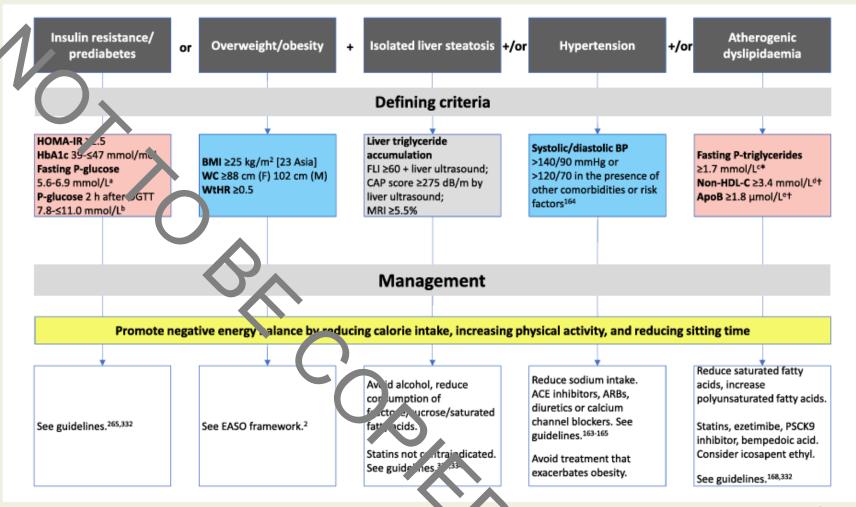


Figure 4 Defining criteria and potential management strategies for systemic me abolic lisorder Stage 1. Conventional units: a 101–124 mg/dL; b 141 to ≤198 mg/dL; c 150 mg/dL; d 131 mg/dL: e 100 mg/dL. *Non-fasting P-triglycerides 2.00 mol/L (177 mg/dL). †Values shown for individuals at moderate risk of atherosclerotic cardiovascular disease. For those at high risk of atherosclerotic cardiovascular disease, lower thresholds apply: non–HDL-cholesterol ≥ 2.6 mmol/L (100 mg/dL); apolipoprotein B ≥ 1.5 μmol/L (≥80 mg/dL). P, plasma; WC, waist circumference; WtHR, waist-to-height ratio; EASO, European Association for the Study of Obesity; FLI, fatty liver index; CAP, controlled attenuation parameter; MRI, magnetic resonance imaging; BP, blood pressure; C, cholesterol; ACE, angiotensin-converting enzyme; ARB, angiotensin-II receptor blocker

Multiple long-term conditions as the next transition in the global diabetes endemic

Edward W. Gregg 12 A, Naomi Holman 123, Marisa Sophiea , Shivani Misra 45, Jonathan Pearson-Stuttard 24, Jonathan Valabhji 92,5,7,9 & Kamlesh Khunti 4,9

Several transitions, or new patterns and dynamics in the contributors and health outcomes, have altered the character and burden of the multi-decade, worldwide growth in prevalence of type 2 diabetes (T2DM). These changes have led to different needs for prevention and care. These dynamics have been driven by diverse demographic, socio-economic, behavioural, and health system response factors. In this Perspective, we describe these transitions and how their attributes have set the stage for multimorbidity, or multiple long-term conditions (MLTCs), to be the next major challenge in the diabetes epidemic. We also describe how the timing and character of these stages differ in high-, middle-, and low-income countries. These challenges call for innovation and a stronger focus on MLTCs across the spectrum of cause, effectiveness, and implementation studies to guide prevention and treatment priorities.

The global pandemic of type 2 diabetes (T2DM) is often viewed as a longterm by-product of the great epidemiologic transition, wherein in the previous century, human patterns of mortality and disease exchanged high rates of mortality due to infections and maternal and child mortality for lower mortality rates driven by chronic conditions such as cardiovascular disease (CVD), cancer, and T2DM12. However, there have been differing changes in incidence for specific chronic conditions. For example, deaths due to CVD decreased beginning in the 1970s and 1980s whereas T2DM, lacking effective policy or health care options for prevention, accelerated in countries have emerged or, most countries of the world continue to experience unrelenting growth of the problem"

The T2DM pandemic has itself been complex and multi-phasic. Underlying the overall increases in prevalence, have been several transitions across distinct periods of the T2DM epidemic that impacted the burden and approaches to care, prevention, and research 1012. In this Perspective, we explore how these transitions have set the stage for multiple long-term conditions (MLTC, or multimorbidity) impacting morbidity, health services, and approaches to prevent T2DM.

Seeding and steady growth of the problem

1980s, consisted of steady, gradual, increases in prevalence in high income of T2DM.

countries (HICs) and more rapid increases in selected low- and middleincome countries (LMICs) undergoing rapid urbanization, nutritional and other sociocultural changes associated with westernization 5,15-15 (Fig. 1). This was associated with a global nutrition transition, with dietary shifts toward refined carbohydrates, added sweeteners and edible oils, and away from legumes and fresh fruits and vegetables. Declining physical activity levels contributed further and collectively they are cited as driving an environment conducive to increases in obesity and T2DM16,27. However, where data were available, diagnosed diabetes prevalence rates were quite the 1990s2-1. Although recent signs of a decrease in T2DM incidence in some low, at around 2-4% in the US, UK, and Northern Europe 1000 compared to recent global estimates, which have surpassed 10% of adults12. Further, this low diabetes prevalence contrasted with very high rates of severe complications, including a 20-fold increased rate of lower extremity amputation, 10 times the rate of end stage renal disease (ESRD), and three times the risk of CVD 30-28. These high complication risks were attributed to suboptimal diabetes care, risk factors and self-management practices. For example, estimates from the some HICs in the mid-1990s showed that large segments of the population with diagnosed diabetes had HbA1c levels well over 9% (75 mmol/mol) and blood pressure levels > 140/80, levels considered to be a sign of inadequate management by current standards 27-39. Thus, perception of the problem centred more on the complications The first phase of growth in the T2DM epidemic, evident in the 1970s and accompanying T2DM rather than the incidence and potential prevention

School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland. School of Public Health, Imperial College London, London, UK. 3NHS England, Wellington House, London, UK. "Department of Diabetes and Endocrinology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK. Division of Metabolism, Digestion & Reproduction, Faculty of Medicine, Imperial College London, London, UK. Lane Clark & Peacock LLP. London, UK. *Chelsea & Westminster Hospital NHS Foundation Trust, London, UK. *Diabetes Research Centre, University of Leicester, Leicester, UK. *These authors contributed equally: Jonathan Valabhii, Kamlesh Khunti, Me-mait edwardgrego@rcsi.ie

https://doi.org/10.1038/s43856-025-00742-9

Summary of Major Transitions in the Diabetes Epidemic in High Income Countries, 1960-2020

1960s-80s

1995-2010

2010-2020

Diversification and Divides

prevalence of diabetes

Persistently high

2015-Forwards

Perspective

Steady growth of the problem

- Low T2DM prevalence
- Steady background growth
- Very high incidence of complications
- Poor care

Targeting quality of care

- Improving care
- Declining complications
- Acceleration of incidence
- Emerging T2DM in youth
- complications Shifting burden to young

Stagnating care &

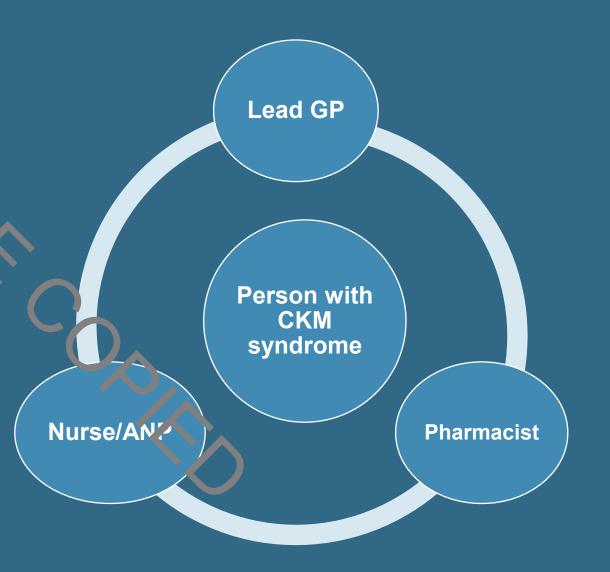
Persistent SES disparities

Emergence of Multi-morbidity

- Continued declining mortality
- Diversifying morbidity
- Expanding exposure
- Increasing MLTCs

Fig. 1 | Summary of major transitions in the global diabetes epidemic, as perienced by high income countries, 1960-2020. The figure describes key patce, incidnece, complications, care, and socio-demographic factors

affecting the T2DM pandemic. T2DM: Type 2 diabetes mellitus; DM: diabetes mellitus; SES: socio-economic status; MLTC: multiple long-term conditions


'if MLTCs are the next major transition in the diabetes epidemic, and the lever drivers lie at both ends of the age spectrum as we suggest, the most practical priorities will lie in prevention, ongoing or routine care models and coordination,

i.e GENERAL PRACTICE, THE WIDER PRIMARY CARE.....and secondary care ongoing care.

Grange Family Practice CKM team

#CKM thought processes are a future cornerstone of General Practice and the wider Primary Care Teams

Long Term Condition Care.

Global Effect of Cardiovascular Risk Factors on Lifetime Estimates

The Global Cardiovascular Risk Consortium

ABSTRACT

BACKGROUND

Five risk factors account for approximately 50% of the global burden of cardio ascular disease. How the presence or absence of classic risk factors at test lift time estimates of cardiovascular disease and death from any cause remains unclear.

METHODS

We harmonized individual-level data from 2,078,948 participants across 133 cohorts, 39 countries, and 6 continents. Lifetime risk of cardiovascular disease and death from any cause was estimated up to 90 years of age according to the presence or absence of arterial hypertension, hyperlipidemia, underweight and overweight or obesity, diabetes, and smoking at 50 years of age. Differences in life span (in terms of additional life-years free of cardiovascular disease or death from any cause) according to the presence or absence of these risk factors were also estimated. Risk-factor trajectories were analyzed to predict lifetime differences according to risk-factor variation.

RESULTS

The lifetime risk of cardiovascular disease was 24% (95% confidence interval [CI], 21 to 30) among women and 38% (95% CI, 30 to 45) among men for whom all five risk factors were present. In the comparison between participants with none of the risk factors and those with all the risk factors, the estimated number of additional life-years free of cardiovascular disease was 13.3 (95% CI, 11.2 to 15.7) for women and 10.6 (95% CI, 9.2 to 12.9) for men; the estimated number of additional life-years free of death was 14.5 (95% CI, 9.1 to 15.3) for women and 11.8 (95% CI, 10.1 to 13.6) for men. As compared with no changes in the presence of all risk factors, modification of hypertension at an age of 55 to less than 60 years was associated with the most additional life-years free of cardiovascular disease, and modification of smoking at an age of 55 to less than 60 years was associated with the most additional life-years free of death.

CONCLUSIONS

The absence of five classic risk factors at 50 years of age was associated with more than a decade greater life expectancy than the presence of all five risk factors, in both sexes. Persons who modified hypertension and smoking in midlife had the most additional life-years free of cardiovascular disease and death from any cause, respectively. (Funded by the German Center for Cardiovascular Research [DZHK]; ClinicalTrials.gov number, NCT05466825.)

LOOK ALIVE - THINK FIVE!

- 5 modifiable risk factors account for ~50% global CVD burden.....
- 50% of all CVD cases could potentially be **prevented** through **effective risk-factor management**.
- Fat | 5 : Smoking; Blood Pressure; Cholesterol; Diabetes; obesity.
- If your 50 and five —less....
- Women CVD 13 yrs later; death 14 yrs later
- Men CVD '0 yrs later; death II years later
- Behavioural change has inpact!
 - HTN Mx & smoking essection in midlife = longer life and more years CVD disease free.

Bottom line: Hope lies in our houses of care; sustain life locally – look for and act on the five.

BP threshold for treatment

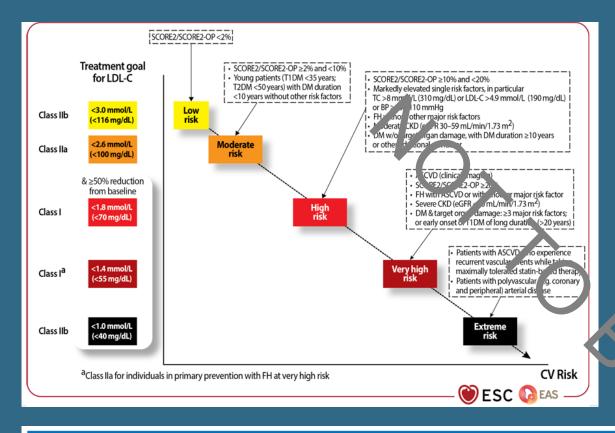
confirm: BP ≥ 135/85 mmHg 7-day average HBPM or day-time average ABPM

start: pharmacological therapy on the diet and lifestyle interventions irrespective of CVD risk.

On-treatment BP target

< 130/80 mmHg measured by 7-day average HBPN or Jay-time average ABPM or office BP*)

or ALARA without causing unacceptable side-effects, and within 6-months of initiating treatment for all adults.


Exceptions:

frail and/or have limited life expectancy

use clinical judgement

Faconti, L., Tantirige, N., Poulter, N.R. et al. Call to action: British and Irish hypertension society position statement on blood pressure treatment thresholds and targets. | Hum Hypertens 39, 537–540 (2025). https://doi.org/10.1038/s41371-025-01055-z

QRISK MISSES RISK

SCORE2 SAVES LIVES

EXTENT OF LIPID LOWERING WITH AVAILABLE THERAPIES

Approximate reduction in LDL-C						
Statin dose mg/day	5	10	20	40	80	
Fluvastatin			21%	27%	33%	
Pravastatin		20%	24%	29%		
Simvastatin		27%	32%	37%	42%	
Atorvastatin		37%	43%	49%	55%	
Rosuvastatin	38%	43%	48%	53%		
Atorvastatin + Ezetimibe 10mg		52%	54%	57%	61%	

RULE OF 6 SAVESTIME

MARY - TATT AND FLUSHING

- 50M rare attender
- Last seen 2021 (last bloods 2019).
- Nil reg meds.
- NKDA.
- Nil PMH bar Mirena coil last year
- Non smoker
- Occasional Social Alcohol
- Office worker
- Sedentary lifestyle but tries
- Married 2 kids

- PC: Non-specific TATT ? menopause
- HPC flushing , brain fog , vaginal dryness, more irritable, further weight gain from baseline raised BMI.
- Hr Cossessment done
- Full systematic questioning and examination yielded **nil TATT red**flag
- Asked permission to discuss weight at current highest weight feels high hunger, low fullness and cravings. Poor sleep from flushing aggravating and ling at night.
- Pregnancies escalated braseling weight
- Always 'a heavy teenager'
- Fhx of obesity. No medication culp เร.
- Explored ideas , concerns , expectations
- Agreed start HRT, TATT bloods and review with results.

First do no harm

Be aware our weight bias and stigma as health care professionals is **harming** the patients we are trying to help.

Weight discrimination consequences (1):

- Reduced health care use
- Avoidance of physical activity
- Lov/ nood/reduced self esteem
- Increased binge eating

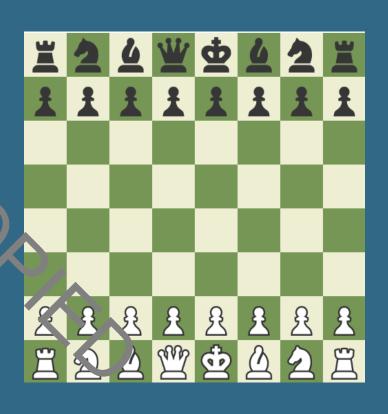
Kings Modified Obesity Staging and the 4 Ms Matter in Primary Care

	Criterion	Stage 0	Stage 1	St ge 2	Stage 3
A	Airway /Apnoea	Normal health Normal	At risk of disease Mild sleep apnoea	R res Cr	Advanced disease
		No snoring Neck circ < 43cm	Mild snoring Epworth score ≥ 10	Witnesse spnoea Dip rate 5/hr	Cor pulmonale Obesity
		Epworth score <10	Mild OSA (dip rate<15/hr)	Uses CPA (controlled) Severe asti	hy, ventilation syndrone
			Neck circ >43cm (size	Severe usu	Uncourted OSA
			18) Mild asthma		
В	BMI	<35 kg/m ²	35-50 kg/m ²	50-60 kg/m²	>60 kg/m²
С	CVD risk	<10% CVD risk <10% over 10 years [10-20% CVD risk ≥10% over 10	>20% or stable heart disease	Severe angina, or
		JBS coronary risk prediction chart*]	years T2DM	Stable IHD CCF NYHA I-II, or >20%	CCF NYHA III-IV
				risk	
D	Diabetes	Normal Fasting or random glucose	IFG / IGT, or previous	T2DM Diet, insulin or OHA	Uncontrolled T2DM HbA1c>9%
		<5.7 mmol/L Normal HbA1c	GDM	controlled HbA1c<9%	Advanced microvascular disease
E	Economic complications	Normal Obesity has no financial	Financial impact Increased travel cost	Workplace disadvantage	Unemployed due to obesity
	complications	impact	Increased travel cost Increased clothes cost	Earnings limited by obesity	Financial effect on 3 rd
				Receiving benefits due to obesity	party (e.g. carer required to
Ļ	Functional status	No limitation	Manager one flight of	Cannot climb stairs (<1	reduce income) Housebound
F	& musculoskeletal	No limitation	Manages one flight of stairs	flight)	Wheel chair user
			Limitation on work or recreation	3rd party assistance for ADL or for dependents	Registered disabled
G	Gonadal &	Normal	PCOS / ED	Subfertility	
6	reproductive axis	Normal sexual and	PCOS	Subfertility or unable to	
		reproductive function Celibate (not seeking physical	Low testosterone (men) Impaired sexual	access IVF Marital/ relationship	
		relationship)	function/ erectile dysfunction	breakdown due to obesity	
				Cessation of all sexual activity	
н	Health status	Normal	Low mood/poor QoL	Mild-moderate	Severe depression
	(perceived)	Good mental and physical well being		depression Takes treatment for	Suicidal ideation Unmanaged substance
				depression	abuse Active self harm
1	Body Image & eating behaviour	Minimal or no concern	Dislikes mirror appearance	Avoids social interaction or mirrors	Eating disorder Active eating disorder
	penaviour	Normal eating pattern	Comfort eating	Severe body image	Social phobia
			Inappropriate eating cues	dysphoria Controlled eating	
			Mild body image dysphoria	disorder	
J	Oesophago-gastric	Normal, no GORD symptoms	GORD (acid reflux)	Oesophagitis on OGD	Barrett's oesophagus
	Junction		controlled on standard PPI	within 12 months Severe GORD symptoms:	
K	Kidney	Normal	Proteinuria	requires high dose PPI eGFR <60	eGFR <30
K	Kidney	Normal	Proteinuna	EGFR < DU	EGFR <3U
L	Liver	Normal	Elevated LFTs, NAFLD on	NASH	Liver failure
			ultrasound		

Mood, depression, eating disorders, anxiety, personality, cognition, attention deficit, sleep	
quality, potentials traumas, addictions.)
Musculoskeletal disorders, chropain, OSA, GERD, urinary incontinence, intertrigo, thrombosis, plantar fascitis, pseudotumour cerebri.	nic
Metabolic: T2D, hyperinsulinemia, dyslipidemia, hypertension, gou cholelithiasis, MAFLD, PCOS, hypothyroidism, obesity-related cancers.	t,
Medical insurance, impact obesity on income, educate employment, the ability to affort ealthy diet, access to weight I programs	d a

- FBP/TFT/B12/coeliac/folate/iron stores all normal
- Airways -Snores but no other OSA symps Neck Circumference 41cm (at risk) STOP BANG 0 EPWORTH 0.
- BMI 36.8 wt104kg WC 141ch yet neight ratio 0.66 (highest weight currently; BMI>30 since at least 2006)
- CVD: LDL 3.6 QRISK 14% BP 150/92 at Minic. No S&S HF.
- Diabetes: Hbalc 84 (repeat 82); recurrent thrush
- Economic: weight not affecting work but menopause is. She cant play sport with her children.
- Functional: LBP long standing no red flags imaging NAD advised supportive mx previously 'loose weight'.
- Gonadal No Infertility/PCOS issues 2 children
- Health status 65 mins /week activity + resistance craining x I
- **mage** No body dysmorphia / no binge eating disorder but neg tive perception of self
- Gastro functional dyspepsia HB N no nsaids/alcohol h plyori -ve i o red flags OTC Rennies
- **Kidney** GFR: >60 mL/min/1.73m² ACR: Normal
- Liver LFTS N Fib 4 low risk 0.72

DIAGNOSIS FOUND


#CKM Diagnoses Found:

- Obesity
- T2D
- Dyslipidaemia
- Hypertension (24 hr BP cuff confirmation exerage day 143/92 mmHg) ECG:
 NSR, no LVH)
- AND functional dyspepsia / mechanical lower back ache / fungal infections/relationship with family impacted.

CKM care is comprehensive whole person care

SILO REVIEW CHECKERS -> CKM REVIEW CHESS

CHESS MOVES MADE

BEHAVIORAL/LIFESTYLE THERAPY F /F PEOPLE WITH OBESITY/ABCD

Consider social determinants of health, including access to care and specialists, nutritious 🥠, st 🤈 spaces 🔻 physical activity, and sleep when developing a treatment plan.

NUTRITION

Focus on a reduced-calorie diet while maintaining diet quality.

- · Adopt healthful meal patterns (eg. Mediterranean diet).
- Prioritize minimally processed, nutrient-dense foods.
- · Limit energy-dense foods and beverages.
- Ensure adequate nutrient intake of protein, fiber, iron, calcium, and other micronutrients with significant weight loss.

Individualized energy plans may include:

- Macronutrient-based strategies
- Meal replacements
- Strategic fasting
- Personalized calorie targets

Consider referral to a registered dietitian. Combine evidence-based dietary approaches to suit individual and cultural preferences.

SLEEP

Screen for sleep disorders.

Promote good sleep hygiene.

Optimize sleep quality and duration.

Refer for polysomnography or sleep medicine evaluation if needed.

Abbreviation: ABCD, adiposity-based chronic disease

Algorithm Figure 7 - Behavioral/Lifestyle Therapy

COPYRIGHT © 2025 AACE. May not be reproduced in any form without express written permission from Elsevier on behalf of AACE. Visit doi.org/10.1016/j.eprac.2025.07.017 to request copyright permission.

PHYSICAL ACTIVITY

Tailor to patient preferences and functional ability.

- . orporate:
- Ae obic activity
- Resistance training*
- duceo edentary behavior

radually is rease intensity and lume as olerated.

Refer to an exercise pe 'alist if needed.
*Resistance trair helps reserve lean
mass during saifica ght loss.

BEHAVIORAL THERAPY

Screen for anxiety, depression, eating disorders, and internalized weight bias.

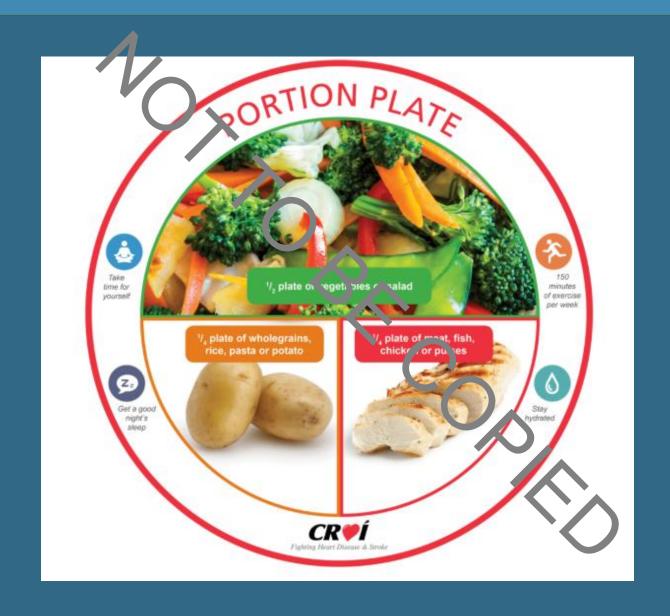
Support behavioral adherence with Goal setting self-monitoring and

- Goal setting, self-monitoring, and problem-solving
- Cognitive behavioral therapy
- Stress reduction techniques

Refer for psychological testing or behavioral health support as needed.

- Food Strategy
- Plate work
- Movement Strategy
- Stress
- Sleep CBTi

Just start, think SMART



Algorithm 7. Behavioral/lifestyle therapy for people with obesity/adiposity-based chronic disease.

PRIMARY EMPHASIS

ON OVERALL HEALTH

CHESS MOVES MADE

CHESS MOVES MADE

Non-pharmacological Moves:

DSMES

Podiatry (low risk)

Regional eye screening (none present)

PARS

Rapid Pharmacological Moves:

Metformin 2g

SGLT2i

irbesartan 75 mg (improved systolic to 132)

Atorvastatin 40 mg

Repeat Hba1c at 3 months was 60; **BMI unchanged**. Incretin initiated and titrated to maximum dose

MURRENT STATE OF PLAY

Hba1c 40

U&E N ACR N

LFTS N

Fib 4 N

Systolic 128 (now off ARB)

LDL 1.9 (LLT combo ezetimibe just added in)

BMI 30.1

17 % body weight loss with incretin

11cms of waist circumference

HRT – CVD protection

Taking medications. On routine review.

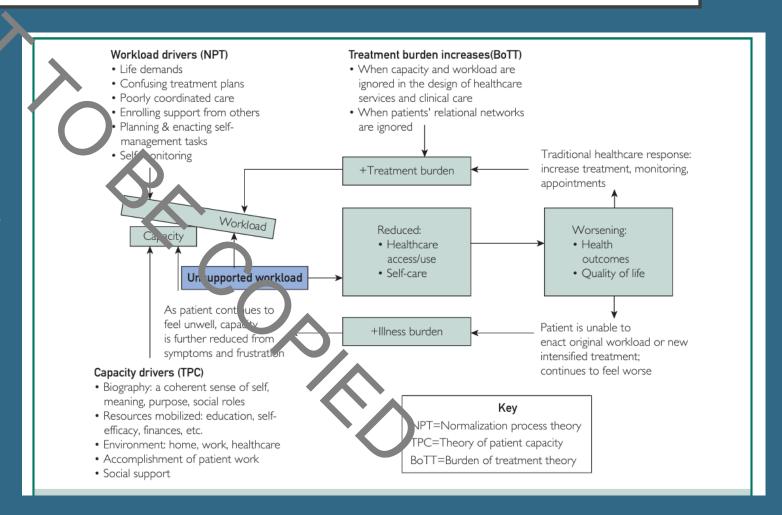
What is she doing currently? I do not know because she is busy flourishing in her life. I will find out at routine review or if she self represents with evolving clinical need.

CVRM APPROACH ELIMINATES CARE FRAGMENTATION

Cardiovascular-Kidney-Metabolic Syndrome

Patient-Centered Implementation Focus

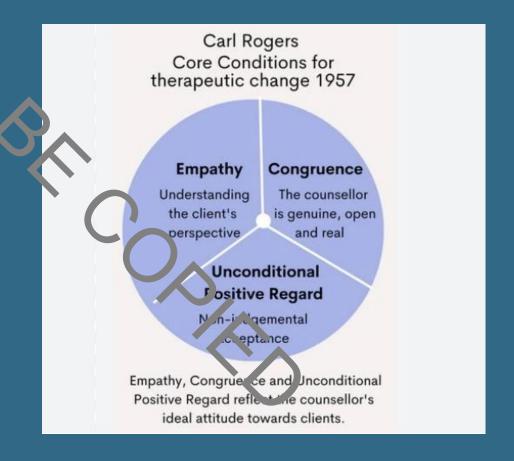
Heart Failure Metabolic A Simborhood and Built Environment Elevated BMI Obesity Blood Glucose Insulin Monitoring Social Det. mi


Abbreviations: ASCVD indicates atherosclerotic cardiovascular disease; BMI, body mass index; CKD, chronic kidney disease; and UACR, urine albumin-creatinine ratio.

GENERAL PRACTICE CKM REVIEW IS MINIMALLY DISRUPTIVE MEDICINE

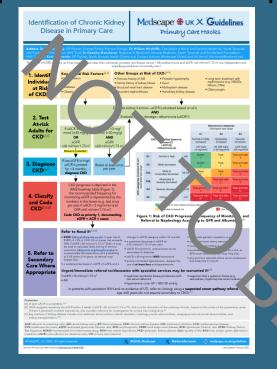
- Multi-organ impact
- Co-ordinated care
- Appointment burden
- I review facilitating agendas across multiple specialties
- Person workload

...Polypharmacy is at play

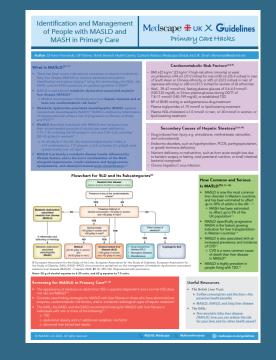

MM PHILOSOPHY OF CARE

The professional conversation is a tool

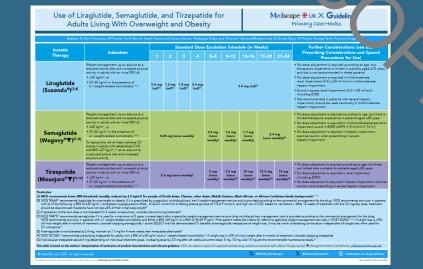
— use it.

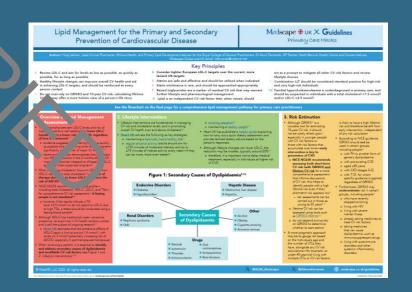

Behavioural Science

Anchoring – Frame – Chunking & Checking – Cognitive ease – Choice architecture- Status Quo bias



A compendium of CKM help for your GP Houses of Care.





OBESITY IS AN INDEPENDENT DISEASE STATE WITHIN THE CVRM SYNDROME THAT DESERVES INDEPENDENT ATTENTION....IN GENERAL PRACTICE

Shift the paradigm to shift the weight: obesity care in the community

solution?

......

"If specialist obesity services

could be embedded within

primary care, it could vastly

expand access to much needed

services across the UK,

simultaneously reducing existing

health inequalities"

......

Hannah O'Hara and Alexander Dimitri Miras

Obesity is a chronic relapsing condition characterised by abnormal or excessive accumulation of adipose tissue that presents a risk to health. It is associated with an increased risk of other chronic conditions including type 2 diabetes (T2DM), cardiovascular disease, renal and liver disease, musculoskeletal problems, and cancer.1 It can impact a person's quality of life. wellbeing, and lifespan. Obesity is a complex condition, with a multitude of biological, social, environmental, and commercial factors, as well as food production and consumption processes contributing to its development.2 One in four adults in the UK is living with obesity with comparable figures seen in children, and recent decades have seen an increase in prevalence.^{2,4}

Current weight

management services

The National institute for Health and Care Excellence (NICE) updated its guidelines on the management of obesity in 2023. Weight management services were previously offered in tiers according to severity and complexity of disease, with Tiers 1 and 2 addressing population-level public health measures and short-term primary care-based services focusing on dietary and lifestyle factors, respectively. Tier 3 services offered pharmacotherapy in addition to ntensive behavioural interventions for those with complex, refractory or severe disease, while bariatric surgery was delivered within Tier 4 services. Engagement with one tier was necessary before onward

Evidence does not support using bariatric surgery as a last resort and changes to NICE guidance removed the requirement for exhaustion of non-surgical measures prior to consideration of surgery. The update also considered Tiers 3 and 4 together as specialist obesity services composed of a multidisciplinary team (MDT) including physicians, specialist nurses, specialist dieticians, psychologists, psychiatrists, and physiotherapists. Access to these services is hugely variable across the UK, with only 21% of clinical commissioning groups in England offering these services in 2014–2015 and one devolved nation (Northern Ireland) having no access whatsoever. It is hoped that the recent amendments will reduce health inequalities resulting from qual access to specialist obesity services but, for those living in areas with no access to bariatric surgery, there is potential for inequities to widen. Undoubtedly, the variability in access

tailored psychological support

deliver obesity care at scale.7

activity levels and improve eating behaviours and diet quality, with significant health benefits to be gained regardless of whether weight loss occurs. Increased activity can be achieved through active travel, for example, or through supervised exercise programmes. Potential dietary approaches include

obesity service recognises its potential to be a specialist primary

NICE recommends several management options for obesity within a specialist service, as described below. We propose that

a substantial proportion of this service could be delivered in a

primary care or community-based setting, in combination with

community, or secondary care-based MDT. Primary care is embedded within the community, maintaining an in-depth knowledge of the population it serves, and is uniquely placed to

Behavioural modification People living with obesity should be supported to increase their

to bariatric surgery needs to be addressed. However, in focusing

on access to surgery, it is imperative that we do not neglect

expansion of non-surgical obesity services, paying particular attention to areas with little or no resource.

Could a community-based approach offer a

more than 20% of the population in this setting is impractical

Conditions with comparable prevalence, such as hypertension,

implementation of Integrated

Care Systems offer an important

opportunity to transform how

the concept of integrated care

intended, obesity care could be

an authentically patient-centred

service, with dissolution of silos

allowing coordinated effective care

for those who need it. This notion

has already been demonstrated in

diabetes care, with MDTs delivering community-based specialist diabetes care addressing the

holistic needs of the patient. There

components of diabetes and obesity

is significant overlap between the

care, and adaptation of existing

pathways would be a viable option

The NICE definition of a specialist

is embraced and actioned as

obesity services are delivered. If

Specialist obesity services are currently almost exclusively delivered in secondary care, but managing a condition affecting

are managed in primary care with only the most complex

patients referred to secondary care. The development and

"If specialist obesity services could be embedded within primary care, it could vastly expand access to much needed services across the UK.

usly reducing existing

O'Hara H, Miras AD. Shift the paradigm to shift the weight: obesity care in the community. Br J Gen Pract. 2024 May 30;74(743):275-278.

Obesity management as a primary treatment goal for type 2 (1) ** (1) diabetes: time to reframe the conversation

Ildiko Lingvay, Priya Sumithran, Ricardo V Cohen, Carel W le Roux

Obesity is now recognised as a disease that is associated with serious morbidity and increased mortal by Open of its main metabolic complications is type 2 diabetes, as the two conditions share key pathophysiological manisa Weight loss is known to reverse the underlying metabolic abnormalities of type 2 diabetes and, as inch, if glucose control; loss of 15% or more of bodyweight can have a disease-modifying effect in people with type 2 labetes, an outcome that is not attainable by any other glucose-lowering intervention. Furthermore, weight loss in this population exerts benefits that extend beyond glycaemic control to improve risk factors for cardiometabolic and quality of life. We review the evidence supporting the role of weight loss in the management of type 2 diabetes and propose that many patients with type 2 diabetes would benefit from having a primary weight-centric approach to diabetes treatment. We discuss the logistical challenges to implementing a new weight-centric primary treatment goal in people with type 2 diabetes.

Introduction

Over the past decade, management of patients with type 2 diabetes has undergone a major conceptual change, with treatment objectives shifting to include a cardiocentric goal in the subpopulation with high cardiovascular risk, alongside the singular glucocentric goal that has long been held.1 This advance was driven by studies showing that several glucose-lowering agents, used in addition to standard of care, further lower the risk of myocardial infarction, stroke, and cardiovascular death,23 largely independently of lowering blood glucose concentration.45 Yet, even after this landmark evolution, the treatment framework for type 2 diabetes is primarily focused on preventing or treating the downstream metabolic consequences, which tend to occur late in the disease course

A promising opportunity lies in intervening upstream to address the key pathophysiological driver of type 2 diabetes and its associated metabolic complications: obesity (figure 1). Sustained loss of at least 15% bodyweight has a major effect on progression of type 2 diabetes, inducing remission in a large proportion of patients and markedly improving metabolic status in many others.67

Until 2021, the only intervention that could routinely result in maintenance of weight loss of this magnitude was bariatric surgery. However, despite its considerable benefits, a complex surgical procedure is not feasible or scalable as the mainstay for a population-wide intervention. Now, with effective pharmaceuticals to reduce bodyweight in the pipeline, many of which can also directly lower blood glucose concentration, it is time to rethink treatment goals for patients with type 2 diabetes to position obesity management as a principal goal (ie, aiming for substantial weight loss as the primary means to treat patients with type 2 diabetes and reach glycaemic targets). Such a weight-centric intervention would disrupt the underlying pathophysiology of type 2 diabetes, reverse or slow down the disease course, concomitantly benefit other associated cardiovascular

risk factors, and prevent microvascular and macrovascular complications of type 2 diabetes in the long term.

Here, we review the clinical evidence supporting weight loss as a fundamental target, propose a novel therapeutic framework, and explore challenges for the widespread implementation of this approach for people with type 2 diabetes.

Type 2 diabetes and obesity are interconnected, heterogeneous diseases

Obesity and type 2 diabetes are heterogeneous conditions. Not all people who are categorised as having obesity (ie, body-mass index ≥30 kg/m²) have excessive adiposity. Moreover, even among people who do have excess adiposity, not all people will have metabolic complications, such as type 2 diabetes.8 Conversely, some people with only minimal adiposity develop metabolic complications, prompting the concept that adipose tissue pathology, rather than quantity, might be the primary driver of complications.9 Abnormal adipose tissue pathology is characterised by adipocyte hypertrophy, visceral adiposity, and ectopic fat deposition, with resulting systemic inflammation and metabolic dysfunction. This process is not directly proportional to adipose quantity or body-mass

Search strategy and selection criteria

References for this Review were identified by searching MEDLINE, PubMed, and the Clinical Trials.gov registration site using the search terms: "overweight", "obesity", "weight gain", "weight loss", "weight management", "body weight", "morbid obesity", "obesity pharmacotherapy", "adiposity", and "bariatric surgery" in combination with the term "type 2 diabetes". We included references from relevant articles that were identified during the search. Articles published in English between Jan 1, 1990, and March 30, 2021, were reviewed and included on the basis of originality, relevance to the broad scope of the Review, and impact in the field (ie, number of citations).

tern Medical Center as, TX, USA nof I Lingvay MD's Department of Medicine (St Vincent's Hospital), University of Melbour Melbourne, VIC, Austi (P Sumithran PhD)of Endocrinology, Austin Health, Melbourne, VIC, Australia (P Sumithran): The Center for Obesity and Diabetes, Oswaldo Cruz German Hospital, São Paulo, Brazil (R V Cohen MD); Diabetes Complications Research Centre.

Correspondence to: Prof Ildiko Lingvay, Divison of Endocrinology, Department of Internal Medicine, University of Tayas Southwestern Medical Center, Dallas, TX 75390-9302

Conway Institute, School of

Medicine, University College Dublin, Dublin, Ireland

Research Centre, Ulster

University, Coleraine, UK

(Prof CW le Rous)

Prof CW le Roux MD); Diabeter

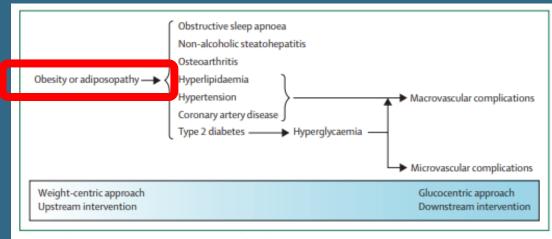


Figure 1: Illustration of the wide-ranging benefits of an upstream weight-centric approach versus a glucocentric management approach

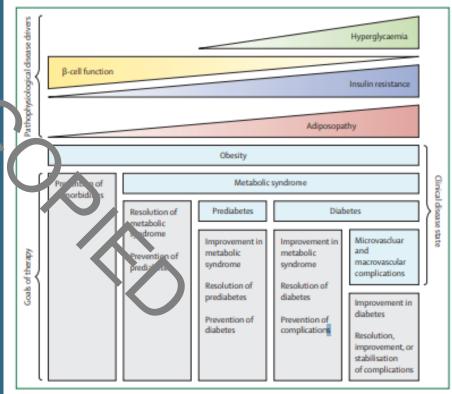


Figure 2: The disease continuum for weight-related type 2 diabetes

Pathophysiology, clinical disease states, and goals of therapy are shown along the continuum.

Received: 7 October 2024 Revised: 7 January 2025 Accepted: 8 January 2025

DOI: 10.1111/dom.16206

REVIEW ARTICLE

WILEY

Striving for early effective glycaemic and weight management in type 2 diabetes: A narrative review

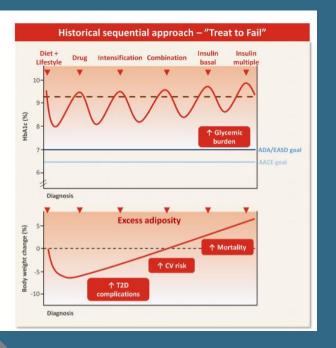
Robert J. Heine MD² | Stefano Del Prato MD³ o Jennifer B. Green MD⁴ | Vivian Thuyanh Thieu PhD² | Meltem Zeytinoglu MD²

¹Department of Medicine, University of Toronto, Toronto, Ontario, Canada

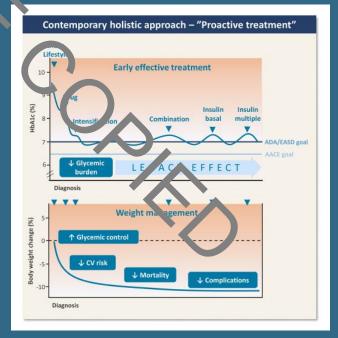
²Eli Lilly and Company, Indianapolis, Indiana, USA

School of Medicine, University of Pisa. Pisa, Italy

⁴Duke Department of Medicine, Duke University, Durham, North Carolina, USA

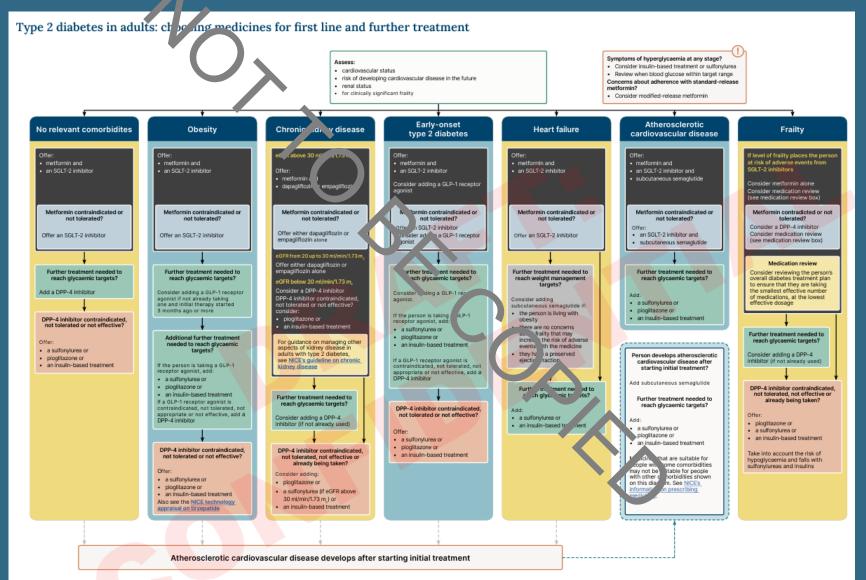

Meltem Zeytinoglu, Executive Medical Director, Global Medical Affairs, Eli Lilly and Company, Lilly Corporate Center, 307 E Merrill, 13 Indianapolis, IN 46285, USA. Email: zeytinoglu_meltem@lilly.com

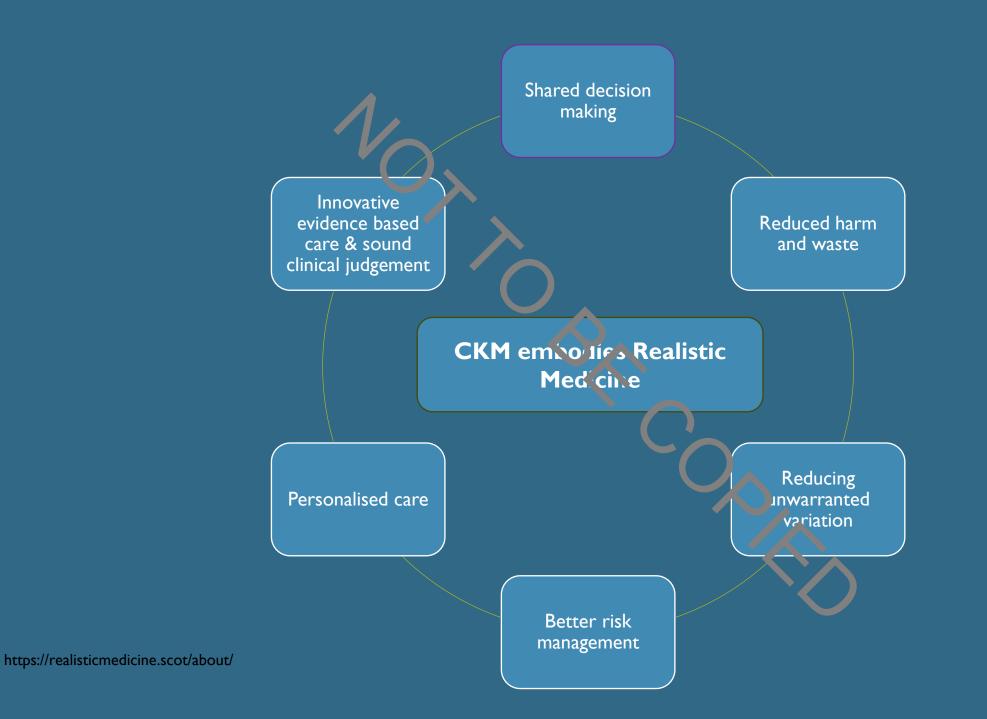
Funding information Eli Lilly and Company


Abstract

Despite the recognition by key guidelines that achieving early glycaemic control has important benefits in individuals with type 2 diabetes (T2D) and that addressing excess adiposity is one of the central components of comprehensive person-centred T2D care, a substantial proportion of individuals with T2D do not meet their metabolic treatment goals. Prior treatment paradigms were limited by important treatment-associated risks such as hypoglycaemia and body weight gain. Therefore, a more conservative, sequential approach to treatment was typically utilized. One potential consequence of this approach has been a missed opportunity to achieve a 'legacy effect', where early treatment to reach glycaemic targets is associated with enduring long-term benefits in T2D. Additionally, while previous treatment approaches have addressed core defects in T2D, including insulin resistance and β-cell function decline, they have been unable to address one of the underlying causal abnormalities-excess adiposity. Here, we review currently available evidence for the beneficial long-term effects of early glycaemic control and management of body weight in people with T2D and discuss potential next steps.

antidiabetic drug, antiobesity drug, diabetes complications, glycaemic control, weight management




Is this really working for us in General Practice?

Advocating for this approach moving forward makes sense.

Hope is on the horizon

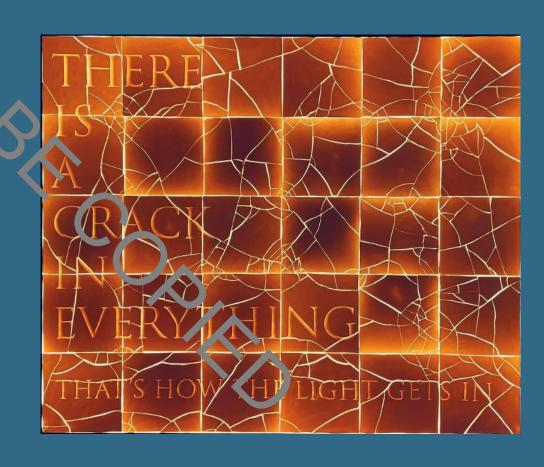
NHS General Practice CKM care

- Whole person advanced generalist care:
 - Co-ordinated
 - Comprehensive
 - Continuous
 - Person centred
- Longitudinal life span care
- MDT care stronger together
- Agile care -open doors of engagement with and back up from other teams when required.

Take homes from a CKM GP

- CKM syndrome a dynamic continuum that changes over time.
- Contextualise. Prioritise. Personalise.
- Shared decision making with the person, not to the person.
- Ordering and pacing of interventions a personalised marathon.
- Life long treatments and interventions; not burst therepies or approaches.
- Combination therapy and interventions = organ and person protection.
- General Practice MLTC infrastructure will evolve from current set up to a de-sioled format.
- This will take a team if you are doing this as a lone professional stop doing it alone.

We are stronger together


CODE CODE

General Practice Cardiovascular Kidney Metabolic Review

VALUE LIES IN A COMPREHENSIVE AND COMPREHENSIBLE APPROACH TO A COMPLEX PROBLEM

The Lightblub

Lets get back to the basics, and get them right.

Review

Cardiovascular-Kidney-Metabolic Syndrome: A New Paradigm in Clinical Medicine or Going Back to Basics?

Victoria Mutruc ^{1,2,*}, Cristina Bologa ^{1,2}, Victorița Șorodoc ^{1,2}, Alexandr Ceasovschih ^{1,2}, Bianca Codrina Morărașu ^{1,2}, Laurențiu Șorodoc ^{1,2}, Oana Elena Ca, ar ³, nd Cătălina Lionte ^{1,2,*}

Mutruc, V.; Bologa, C.; S, orodoc, V.; Ceasovschih, A.; Morăras, u, B.C.; S, orodoc, L.; Catar, O.E.; Lionte, C. Cardiovascular–Kidney–Metabolic Syndrome: A New Paradigm in Clinical Medicine or Going Back to Basics? J. Clin. Med. 2025, 14, 2833. https://doi.org/10.3390/jcm14082833

General Practice #CKM care is the enactment of humanity.

Collectivism
Compassion
Care

The responsibility to curate it together has with us.