Keynote Address
18th Scottish Conference of PCDOS
Glasgow, 28th October 2025

WHAT CAN WE LEARN FROM DIABETES CLINICS IN INDIA?

Dr. Ranjit Unnikrishnan

MD., FRCP (Lond, Glasg & Edin), FACE, FACP, FICP

PATRON

Madras Diabetes Research Foundation, Chennai, India

(ICMR COLLABORATING CENTRE OF EXCELLENCE)

VICE-CHAIRMAN

Dr. Mohan's Diabetes Specialities Centre Chennai, India

(IDF CENTRE OF EXCELLENCE IN DIABETES CARE)

Declaration of conflict of interest

None to declare

Outline of my talk

Background

Clinical Care

Research

Conclusions

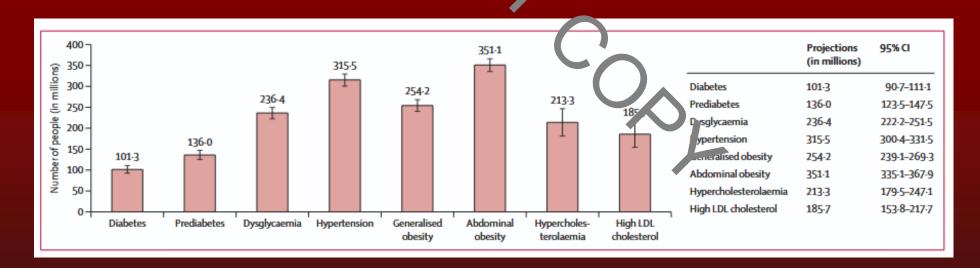
Outline of my talk

Background

Clinical Care

Research

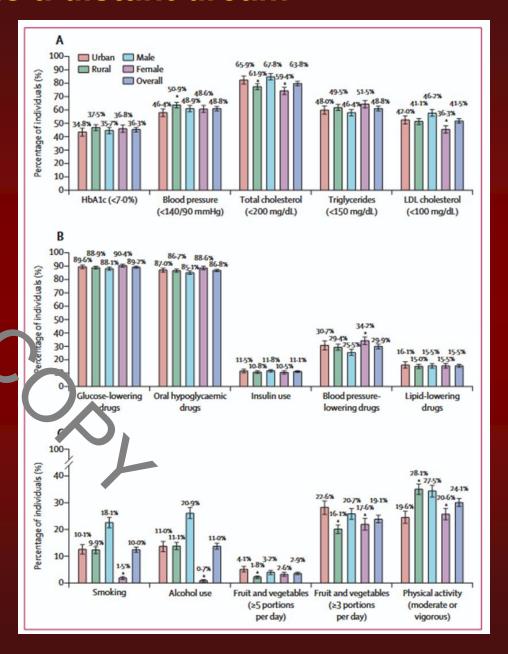
Conclusions



NCDs in India are a large and growing problem

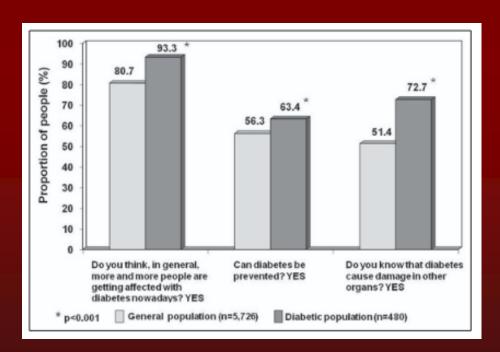
Metabolic non-communicable disease health report of India: the ICMR-INDIAL national cross-sectional study (ICMR-INDIAB-17)

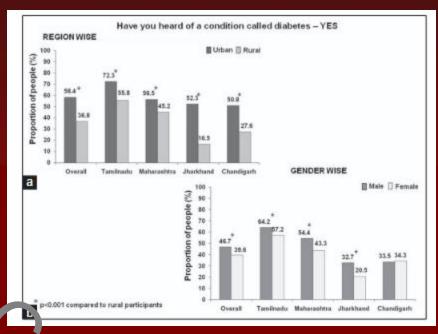
Ranjit Mohan Anjana, Ranjit Unnikrishnan, Mohan Diseba, Rajendra Pradeepa, Nikhil Tandon, Ashok Kumar Das, Shashank Joshi, Sarita Bajaj, Puthiyaveettil Kottayam Jabbar, Hiranya Kumar Das, Alay Komar, Vinay Kumar Dhandhania, Anil Bhansali, Paturi Vishnupriya Rao, Ankush Desai, Sanjay Kalra, Arvind Gupta, Ramakrish Jest Lakabaya, Sri Venkata Madhu, Nirmal Elangovan, Subhankar Chowdhury, Ulagamathesan Venkatesan, Radhakrishnan Subashini, Tanvir Kau Rupinder Singh Dhaliwal, Viswanathan Mohan, for the ICMR-INDIAB Collaborative Study Group*

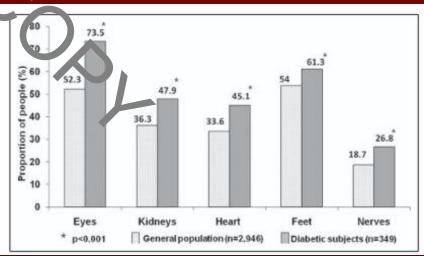

Good metabolic control is a distant dream

🔭 🌘 Achievement of guideline recommended diabetes treatment targets and health habits in people with self-reported diabetes in India (ICMR-INDIAB-13): a national cross-sectional study

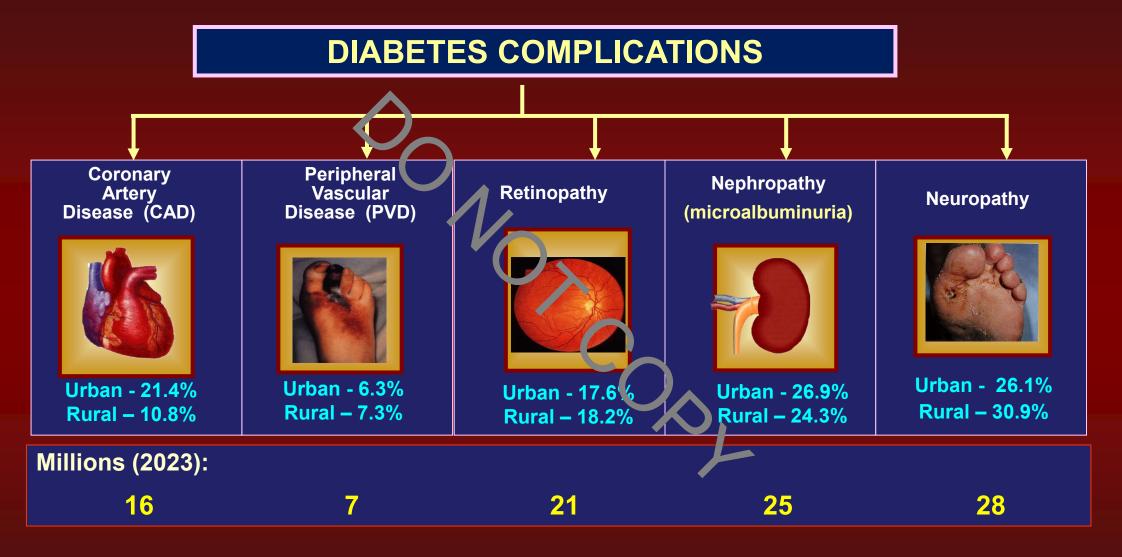
Ranjit Mohan Anjana, Ranjit Unnikrishnan, Mohan Deepa, Ulagamathesan Venkatesan, Ranjit Unnikrishnan, Ranjit Unnikrishna Ashok Kumar Das, Sarita Bajai, Anil Bhansali, Sri Venkata Madhu, Vinay Kumar Dhandhania, Purniyay (cfil Kotta), m Jabbar, Sunil M Jain, Arvind Gupta, Subhankar Chowdhury, Mohammed K Ali, Elangovan Nirmal, Radhakrishnan Subashi , Tanvir Kau Rupinder Sinah Dhaliwal Nikhil Tandon, Viswanathan Mohan, for the ICMR-INDIAB collaborators*


Only 7.7% of individuals with diabetes in India achieve ABC (HbA1c, BP and LDL cholesterol) targets




Awareness of Diabetes is Poor....

Knowledge and awareness of diabetes in urban and rural India: The Indian Council of Medical Research India Diabetes Study (Phase): Indian Council of Medical Research India Niabetes 4


M. Deepa, A. Bhansali¹, R. M. Anjana, R. Pradeepa, S. R. Joshi², P. P. Joshi³, V. K. I landhar a⁴, P. V. Rao⁵, R. Subashini, R. Unnikrishnan, D. K. Shukla⁶, S. V. Madhu⁷, A. K. Das⁸, V. Mohan, T. Kaur⁶

Unsurprisingly, burden of diabetes complications is high!

Where are individuals with diabetes in India treated?

- Public healthcare is free in India
- However, most individuals with diabetes (62%) rely on private healthcare facilities
- Most practices are stand-alone, with no facilities for comprehensive evaluation
- Larger private hospitals do not focus on diabetes care, and are often unaffordable

DR. MOHAN'S DIABETES SPECIALITIES CENTRE

Inaugurated on Sept. 1, 1991

PROF. V. MOHAN

Provide world-class care for diabetes and its complications under one roof at affordable cost

Late DR. REMA MOHAN (1954-2011)

CHAIRMAN

VICE-CHAIRMAN

PROF. V.MOHAY

MANAGING DIRECTOR

DR. R.M. ANJANA

DR,. RANJIT UNNIKRISHNAN

DR. MOHAN'S GROUP OF DIABETES INSTITUTIONS

Clinical Care

MADRAS DIABETES RESEARCH FOUNDATION

Research

DR. MOHAN'S DIABETES EDUCATION ACADEMY

Education and Training

DIRECT

Charity

Outline of my talk

- Background
- Clinical Care
- Research
- Conclusions

What makes us special?

Precision Diabetes

Diabetology

Diabetic Eye Clinic

Diabetic Foot Clinic

harmacy

Advanced Laboratory

Physical Activity

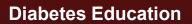
Diabetic Heart Unit

Diabetic Liver Clinic

In-Patient Facility

Dental Unit

Radiology Unit


Operation Theatre


Nutrition & Dietitics

Yoga & Stress Managament

Patient Flow at Dr. Mohan's

All check-ups completed in 6 hours!

Awards & Recognitions

London, UK

Barriers to diabetes care in India

- Cost
- Inconvenience (travel, vaiting time etc.)
- Shortage of qualified personnel
- Lack of awareness
- Lack of India-specific data and guidelines

Making diabetes care more affordable...

- Low-cost investigations (e.g. retinal camera)
- Use of generic drugs and FDCs
- Multitasking of staff

Why Charity?

- 70% of patients in India 'pay out of pocket'
- Many cannot afford to pay

A 100 % NON-PROFIT CHARITABLE ORGANISATION

• Founded in 1991, DIRECT aims to make diabetes care in India comprehensive and affordable for all

15,000+

patients receiving lifelong free treatment

villages adopted and screened

+008

Children with T1D provided **free insulin**

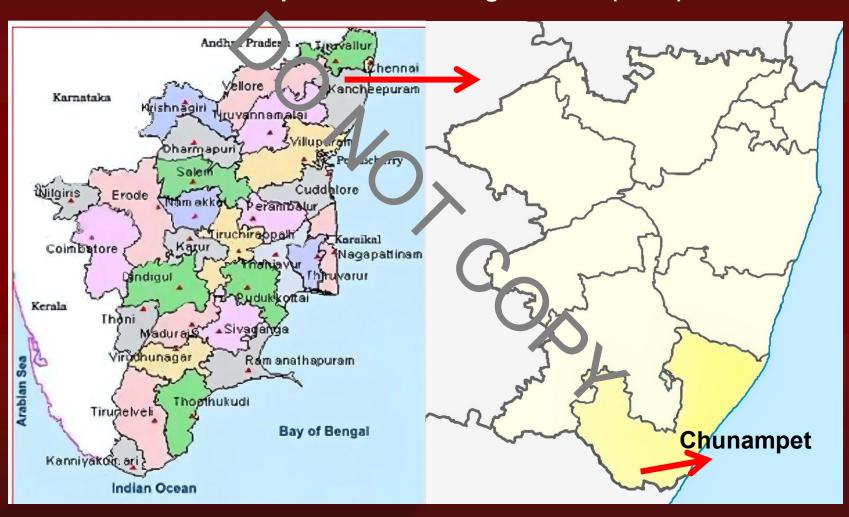
FREE OUTREACH DIABETES CLINICS & CAMPS

3 Free Diabetes Clinics

Free Mobile Hospital

in association with Sathya Sai Organization

25,000+


Free Diabetes Camps
Conducted Across India

5M+

People Screened

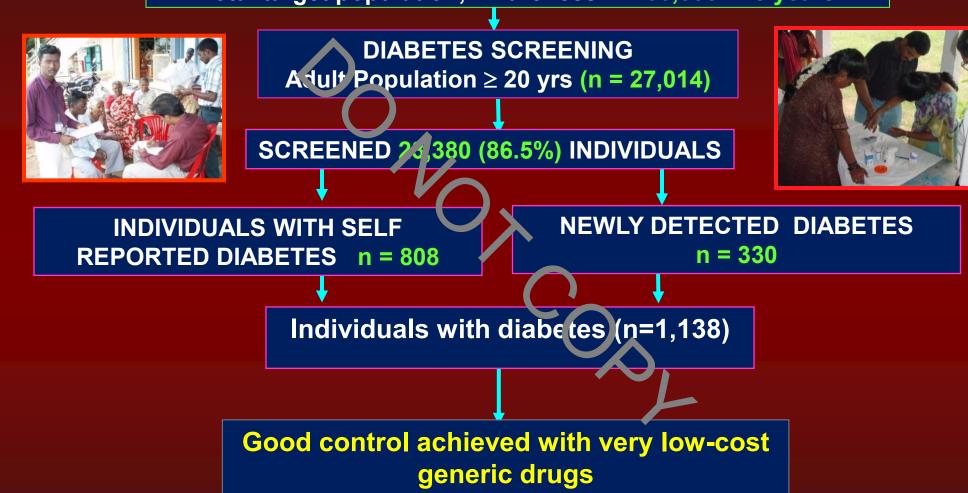
Chunampet Model for Rural Diabetes Care

Supported by World Diabetes Foundation [WDF], Denmark & Indian Space Research Organization (ISRO)

TELEDIABETOLOGY VAN

Basic infrastructure in mobile van:

- Facilities for screening for diabetes complications
 (Fletinal camera, Doppler, Biothesiometry and ECG)
 - V-Sat dish for telemedicine facility
 - Video conferencing equipment
 - > Computers and Laser printers



VIDEOCLIP OF CHUNAMPET PROJECT

Mohan V et al, Journal of Diabetes Science and Technology, Dec 2012;6:1355-1364

The Lancet

India: Towards Universal Health Coverage 3

Chronic diseases and injuries in India

Panel 5: Lhu nampet Rural Diabetes Prevention Project

In Indix 50 r illion people have diabetes; this number is projected by increase to 87 million by 2030. 116 The Madras Diabetes Reréarch Foundation in Chennai, established by Viswanathai, and Rema Mohan, set up an innovative new programme for prever ion and management of diabetes in rural India—the Chur a npet Rural Diabetes Prevention Project—with the sopport of the World Diabetes Foundation and the Indian Space Learnh Organisation. The project aims to prevent diabetes in 50 000 people in 42 villages around Chunampet in the Kanch ipura n district of Tamil Nadu. Village health workers and a nobject elemedicine unit are used to screen for diabetes. A rug d diabetes centre has been set up to provide basic care for beople with diabetes, and to ensure community acceptance and project sustainability the project provides employment to me, and women from local villages. Although diabetes screening is provided free of charge about 6001 of patients at the dish

treatment. The Chunampet Rural Diabetes project thus seems to be a good model for delivering preventive and therapeutic diabetes health care to rural areas.

diabetes centre in Chennai, and, depending on their socioeconomic status, are provided free or as subsidised

treatment. The Chunampet Rural Diabetes project thus seems to be a good model for delivering preventive and therapeutic diabetes health care to rural areas.

Bringing diabetes care to doorsteps....

All check-ups completed in 6 hours!

Teleconsultation Services

and prescribes through

Tele-consultation (video/audio)

Call lands at the Dietic an checks the previous instoly and order call centre its been redirected to the Dietician the tests at d fix a pointment for hame care Medicines are delivered to the door step Telemedicine va Phlebotomy is done at the **Patient** door step with sample identification Consultant views the report online and consults the patient

Samples are processed and

reports are generated

Dr. Mohan's On Wheels Services

DIABETES TECHNOLOGY & THERAPEUTICS Volume 24, Number 8, 2022 Mary Ann Liebert, Inc. DOI: 10.1089/dia.2022.0025

Tele-Ophthalmology Versus Face-to-Face Patienal Consultation for Assessment of Diabetic Retinopathy in Diabetes Care Centers in India: A Multicenter Cross-Sectional Study

Ramachandran Rajalakshmi, FRCS, PhD,¹ Ganesan UmaSankari, MSc,² Vijayaraghavan Prathiba, FRCS,¹ Ranjit Mohan Anjana, MD, PhD,³ Ranjit Unnikrishnan, MD, FRCP,³ Ulagamathesan Venkatesan, PhD,² Saravanan JebaRani, MSc,⁴ Coimbatore Subramanian Shanthirani, PhD,² Sobha Sivaprasad, FRCO,⁵ and Viswanathan Mohan, FRCP, DSc³

Abstract

Aim: To evaluate the effectiveness of tele-ophthalmology (TO) versus face-to-face screening for diabetic retinopathy (DR) in diabetes care centers (DCC) across India.

Methods: This is an observational, multicenter, retrospective, cross-sectional study of DR screening in individuals with diabetes performed across 35 branches of a chain of DCC in 20 cities in India over 1 year. In 30 DCC, DR screening was performed by TO, where retinal images obtained using Fundus on Phone camera were uploaded through the telemedicine network for centralized DR grading by eight retina specialists. In five DCC, DR screening was performed by fundus examination (FE) by the same retina specialists. The rate of detection of sight-threatening DR (STDR) (defined as the presence of proliferative DR and/or diabetic macular edema) through the two modes was compared.

Results: A total of 58,612 individuals were screened for DR from January 1, 2018 to December 31, 2018: 25,316 by TO and 33,296 by FE. The mean age and mean duration of diabetes of the individuals with diabetes screened by TO was 55.8 ±11.2 years and 9.5 ±7.3 years; and in individuals screened by FE, it was 57.5 ±11.6 years and 11.5 ±8.0 years respectively. The mean glycated hemoglobin was 8.8% ±2.1% and 8.5% ±1.9% in the two groups, respectively. Any DR was detected in 31.7% (95% confidence interval [CI]: 31.0–32.3) by telescreening and in 38.5% (95% CI: 37.9–39.0) by FE, whereas STDR was detected in 7.3% (95% CI: 7.0–7.7) by TO and in 10.5% (95% CI: 10.2–10.9) by FE. Overall, 11.4% individuals with diabetes in the TO group, including 4.1% with ungradable images, were advised referral to retina specialists for further management. Conclusion: Screening for DR at DCC using TO is feasible and effective for STDR detection in India and may be adopted throughout India.

Only 5 of our 50 centres have ophthalmologists. So, we launched Tele-ophthalmology

About 60,000 individuals are screened every year using low-cost retinal camera

3-D Digital Diabetes Delivery

@ our centre

An Al-powered chatbot that uses automated digital conversations to help people with diabetes

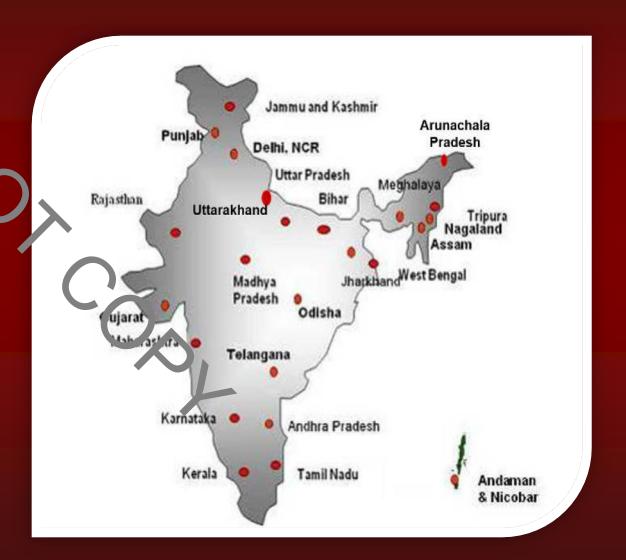
A patient-friendly *mobile*app offering appointment booking, health tracking, prescription refills and many more

A web-based *precision* medicine tool to classify type 2 diabetes patients into subgroups & assess the disease complications.

COURSES OFFERED

- Fellowship in Diabetes
- Postdoctoral Fellowship in Diabetes
- > Fellowship in Eye Disorders of Diabetes
- Deakin DMDEA course for Diabetes Nurse Educator

PLACES IN INDIA WHERE OUR FELLOWS WORK


~500

Fellows Trained till date

Diabetes clinics set up in various parts of India

1.5 Million

People with Diabetes
Treated

in collaboration with

Public Health Foundation India (PHFI)

- Certificate Course in Evidence Based Diabetes Management (CCEBDM)
- Certificate Course in Gestational Diabetes Mellitus (CCGDM)
- Certificate Course in Evidence Based Management of Diabetic Retinopathy (CCDR)

The material from our Fellowship program was used for these courses

18,828

Doctors Trained

306

Faculty

18.8 Million

People with Diabetes benefitted

Supported by

Certificate Course in Evidence Based Diabetes Management (CCEBDM)

State Government Collaborations7 State Governments and 1 PSU

State Govt.	Batch	Paricipants
Madhya Pradesh	1	96
	2	213
	3	210
Manipur	1	23
	2	34
Kolkata Municipal Corporation	1	20
	2	14
Odisha	1	182
Haryana	1	30
Kerala	1	125
PSU-Reliance Industry Ltd	Jamnagar	18
	Mumbai	27
Mizoram	1	20
Total		1012

International Collaborations

(Collaboration with 8 International organizations spread across Asia and Africa)

Diabetes and Endocrinology association of Nepal (DEAN)

Myanmar Society of Endocrinology and Metabolism (MSEM) & Myanmar Diabetes Association (MMDA)

East African Diabetes Study Group (EADSG)

Bangladesh Society of Medicine (BSM)

Kabul University of Medical Sciences

Afghanistan Endocrine Society (AES)

Primary Care Diabetes Group (PCDG) of Sri Lanka

THE LANCET Diabetes & Endocrinology

Blood pressure and glycaemic effects

of dapagliflozin

Puberty and pubertal disorders

Challenges for global access to insulin

Innovation in capacity building of primary-care physicians in diabetes management in India: a new slant in medical

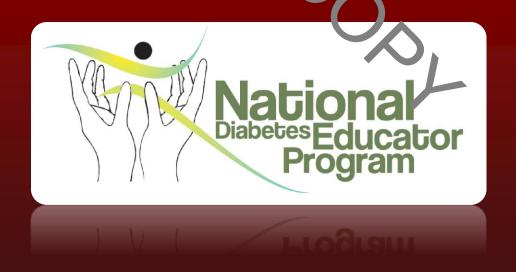
education

Sandeep Bhalla, Ranjit Unnikrishnan, Rahul Srivastava, Nikhil Tandon, Viswanathan Mohan, *Dorairaj Prabhakaran

India is home or nore than 69 million individuals with diabetes, and mis agure's expected to rise to 123 million by 2040.1 In view of the low doctor-to-population ratio (1:1800),2 uneven distribution of specialists (most of whom are in urban areas), and the fast that most initial diagnoses of diabetes (about 70%) are made by nonspecialists, one key to effectively tacking the challenge of diabetes is to strengthen primary health care. In India, management of diabetes is predominantly the domain of specialists, who are too few in number term intervention to tackle the rising burden of

(roughly 1000 endocrinologists [Tandon N, All India Institute of Medical Sciences, personal communication] and 100 000 post-graduate physicians);³ primary-care physicians (PCPs) are ill equipped to manage patients with diabetes, because of inadequate training during their undergraduate studies. Hence, the quality of care provided by PCPs is compromised compared with that by specialists, 4.5 resulting in poor health outcomes.

Capacity building of PCPs can be an effective short-

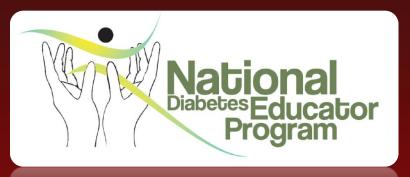

www.thelancet.com/diabetes-endocrinology Vol 4 March 2016

www.thelancet.com/diabetes-endocrinology Vol 4 March 2016

Lancet Diabetes Endocrinology. 2016; 4: 200-202.

Till around the year 1995, there were to Diabetes Educators in India

Hence, we started the National Diabetes Educator Program (NDEP)


Course Directors

DR. SHASHANK R. JOSHI

Till Now

28,565

In Association with

Supported by

Diabetes Educators Trained across 7,500 Centres

PUBLIC DIABETES AWARENESS PROGRAMS

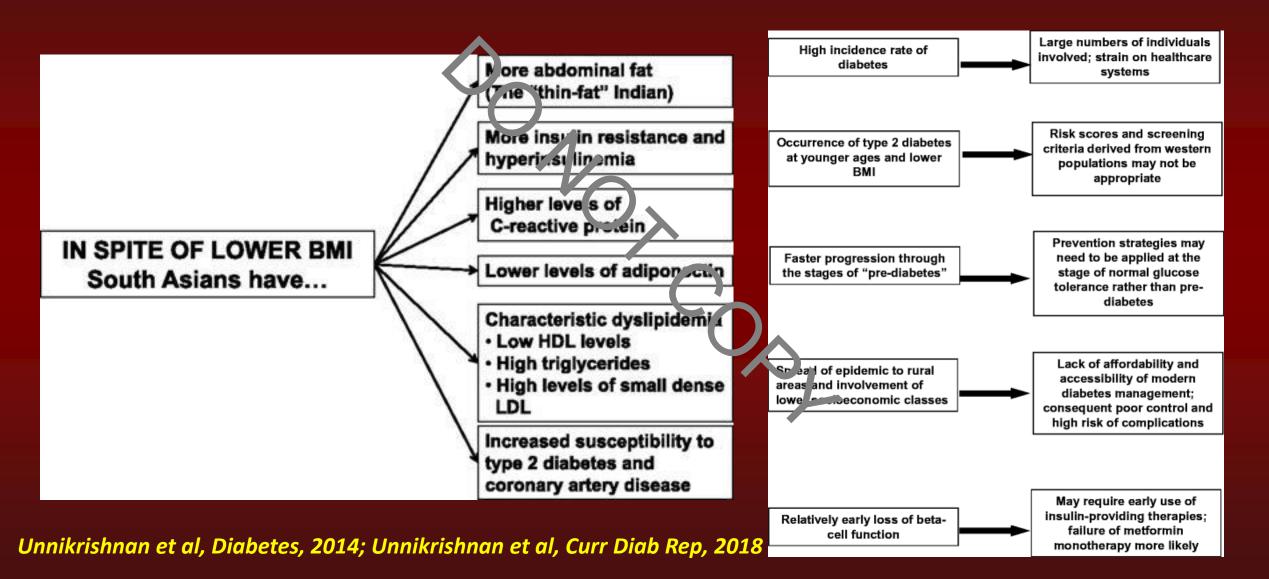
16,000

Free Diabetes
Awareness Camps

1 Million

Beneficiaries

Social media


1.10 Million Followers

Outline of my talk

- Background
- Clinical Care
- Research
- Conclusions

Type 2 diabetes in south Asians is different!

Madras Diabetes Research Foundation

Aim: To carry out world-class, India-specific research on diabetes and its complications

Locations

20

PhD Students

20

Post-Doctoral Scientists

200+

Staff

International Collaborations

Denmark

Spain

Russia

Australia

Australia

Canada

UK

Germany

Germany

UK

 \Leftrightarrow

Chelsea and Westminster Hospital NHS

UK

UNIVERSITY OF LEICESTER

UK

💻 THE UNIVERSITY OF WARWICK

UK

UK

USA

& SEVERAL NATIONAL

INSTITUTES

USA

USA

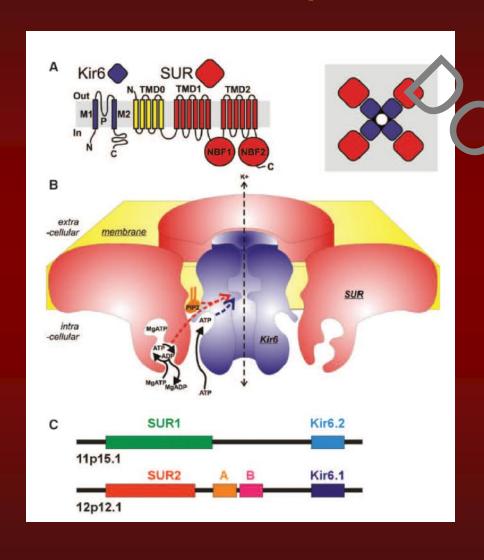
PUBLICATIONS

Journals include

New England Journal of Medicine, Lancet, Nature, Nature Genetics, Nature Reviews and Endocrinology, Lancet Diabetes & Endocrinology, BMJ, Diabetes Care, Diabetes, Journal of Clinical Endocrinology and Metabolism, Diabetologia, etc

RESEARCH CONTRIBUTIONS OF MDRF

- Large epidemiological studies on diabetes and other NCDs providing robust prevalence data at the city (CURES) and state and national (ICMR-INDIAB) levels
- Development of validated diabetes risk score (IDRS)
- First data on incidence of T2D and mortality from India
- Identification of novel subtypes of 72D
- Development of diabetes-friendly food products (low GI rice and snacks)
- Diet recommendations for remission and prevention of T2D
- First ever "Atlas" of Indian Foods
- Development of novel dance-based HIIT intervention to prevent diabetes in women and girls
- Coordinating centre for monogenic diabetes research in India


Monogenic diabetes occurs as a result of a mutation in a single gene associated with insulin secretion or action

Analyses performed:

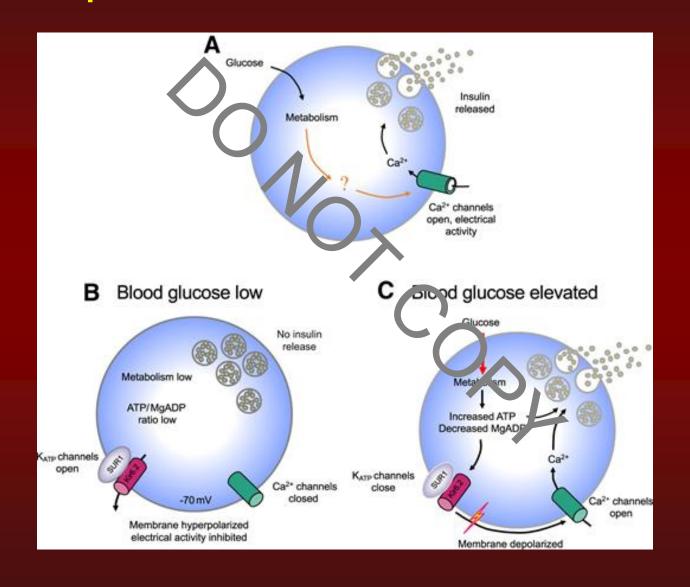
- DNA extraction.
- II. Targeted sequencing ar alyses Seventy five genes associated with MODY and other similar forms of monogenic diabetes were reened and analyzed for pathogenic variations by targeted sequencing analyses using mor.ogenic gene panel. These are given below.

HNF4A (MODY 1)	BSCL2	SATA	LPL	PTF1A
GCK (MODY 2)	CACNA1D	GP.A6	LRBA	RFX6
HNF1A (MODY 3)	CAV1	GLIS3	TINEA	SALL1
IPF1 (MODY 4)	CISD2	GLUD1	MNX.1	SIRT1
HNF1B (MODY 5)	COQ2	GPC3	"TU".OGS	SIX1
NEUROD1 (MODY 6)	COQ9	HADH	NKX 2-2	SLC16A1
CEL (MODY 8)	CTLA4	IER3IP1	NKX6-1	SLC. 19A2
INS (MODY 10)	DCAF17	IL2RA	PAX2	SLC29 13
ABCC8 (MODY 12)	DNAJC3	INSR	PIK3R1	SLC2
KCNJ11 (MODY 13)	DYRK1B	ITCH	PLAGL1	STAT1
AGPAT2	EIF2AK3	JAK1	PLIN1	STAT3
AIRE	EIF2S3	KDM6A	PMM2	STAT5B
WFS1	EYA1	KMT2D	POLD1	TNFAIP3
AKT2	ZBTB20	LMNA	PPARG	TRMT10A
APPL1	FOXP3	ZFP57	PPP1R15B	UCP2

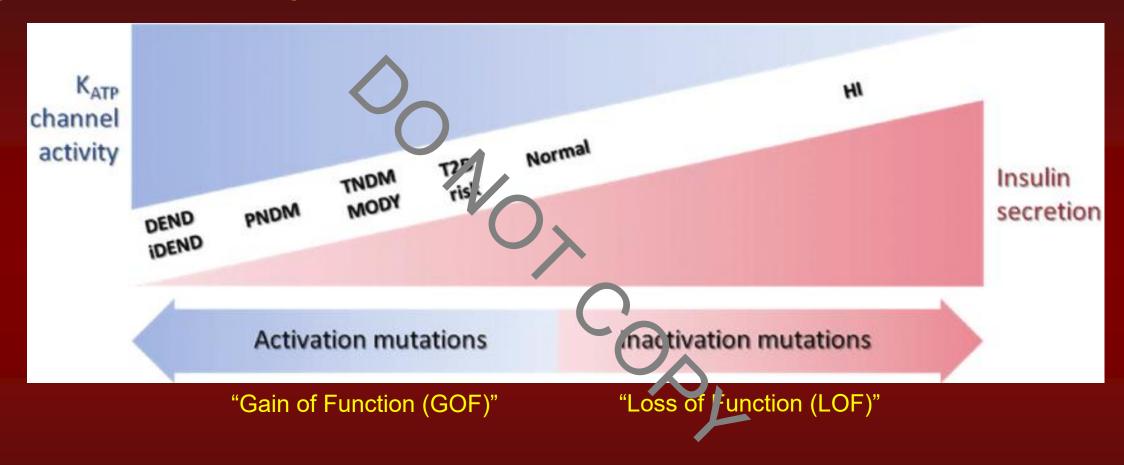
KCNJ11 and ABCC8 encode the Kir 6.2 and SUR subunits, respectively, of the ATP sensitive potassium channel

Heterooctamer consisting of:

- Four members of the inwardly rectifying potassium channel (Kir) family
- Jour members of the sulfonylurea receptor (SUR) family

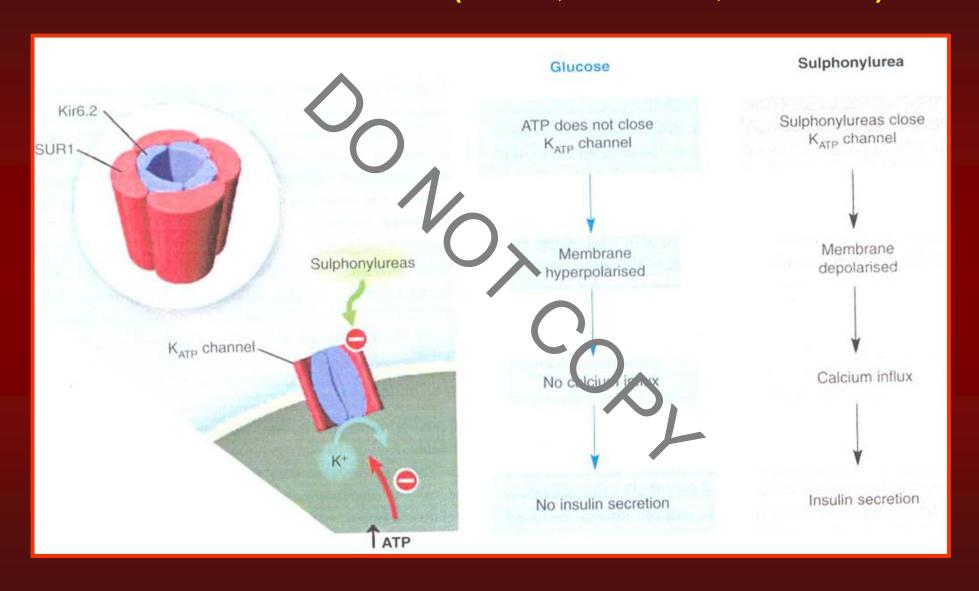

In the peta-cell, the respective components are Kir 6.2 and SUR1.

Cardiac muscle carries Kir 6.2/ SUR2A and vascular smooth muscle carries Kir 6.1 or 6.2/SUR2B


ATP-binding sites are breated on the Kir subunit and ADP-binding sites on the SUP subunit

ATP binding closes the channel while ADP binding opens it

The K-ATP channel plays a central role in glucose-mediated insulin secretion from the pancreatic beta-cell



Mutations in K-ATP channel genes (ABCC8 and KCNJ11) can lead to a spectrum of clinical presentations

DEND- Developmental delay, epilepsy, neonatal diabetes; iDEND- intermediate DEND; PNDM- permanent neonatal diabetes mellitus; TNDM- transient neonatal diabetes mellitus; MODY- Maturity onset diabetes of young; T2D- type 2 diabetes. HI- hyperinsulinemia

Sulfonylureas (SU) are effective therapy for diabetes caused by GOF mutations in KCNJ11 and ABCC8 (PNDM, MODY 12, MODY 13)

CASE STUDY

- > 3-month-old female boby. Ivana Das from Kolkata diagnosed to have diabetes 15 days after birth.
- Considering her age at onset, she was started on insulin injections.
- However, even with 14 units of insulin (2.5 units/kg body weight) given as four injections per day, her sugar tevels remained between 300-400 mg/dl.
- She was referred to our centre for further evaluation.

CASE STUDY

- Considering the age at onset, a diagnosis of Neonatal Diabetes was made.
- > The baby's blood sample was sent for genetic testing.

Genetic diagnosis of the patient after sequencing

Heterozygous mutation identified

Gene

Location

DNA Description

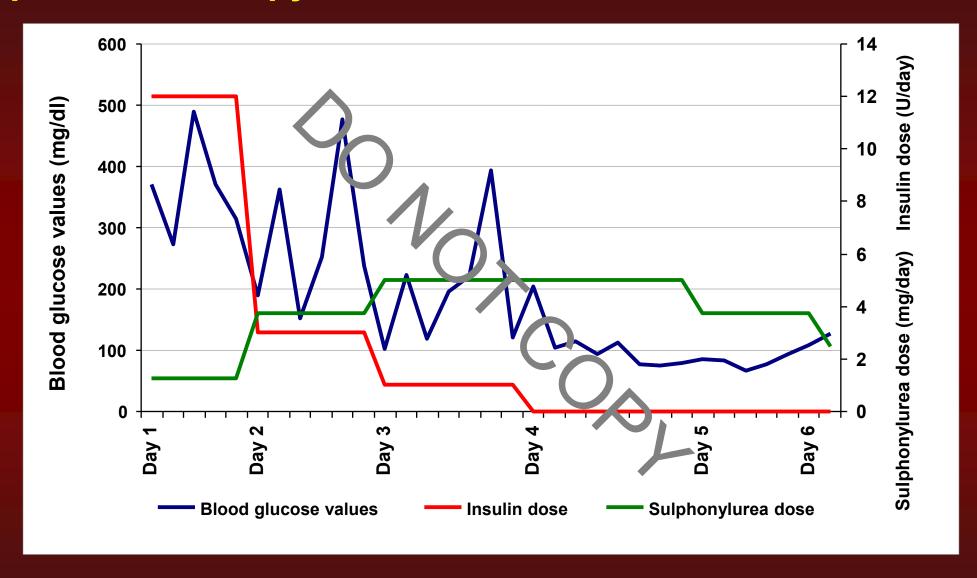
Protein Description

: *KCNJ11*

: Exon 1

:c.1001G>T

: p.Gly334Val (p.G334V)


Children with this mutation can be shifted from insulin treatment to sulfonylureas

Contd....

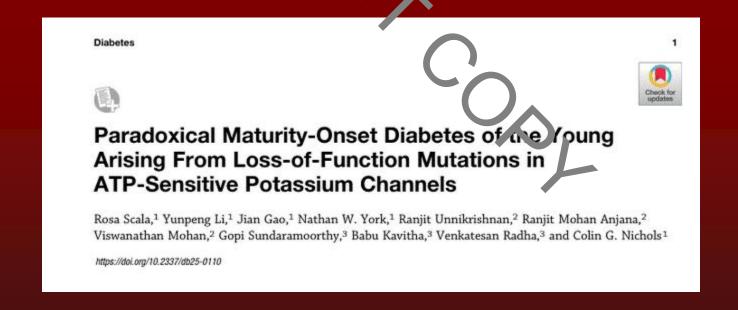
CASE STUDY

The baby was started on Glibenclamide and the dose of insulin was gradually decreased over 5 days

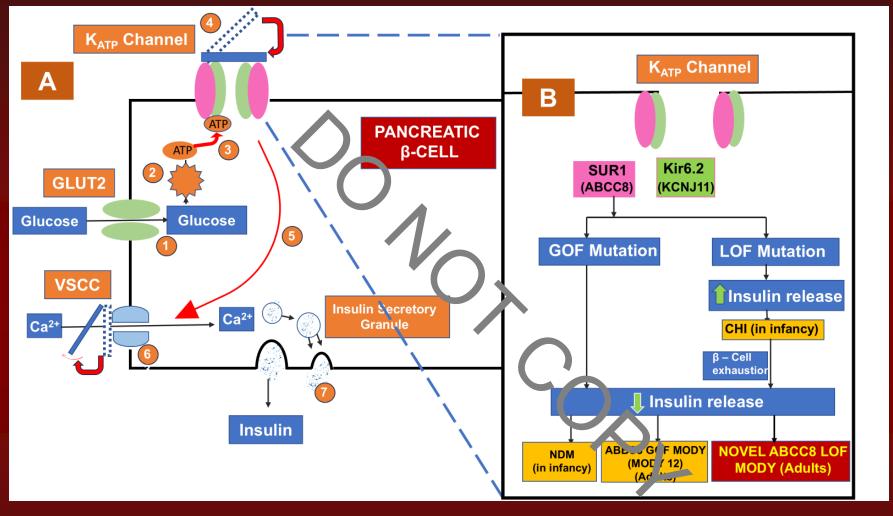
Response to therapy

By day 5, she was able to completely stop insulin and her sugars were absolutely normal and her general condition also improved

Ivana Das

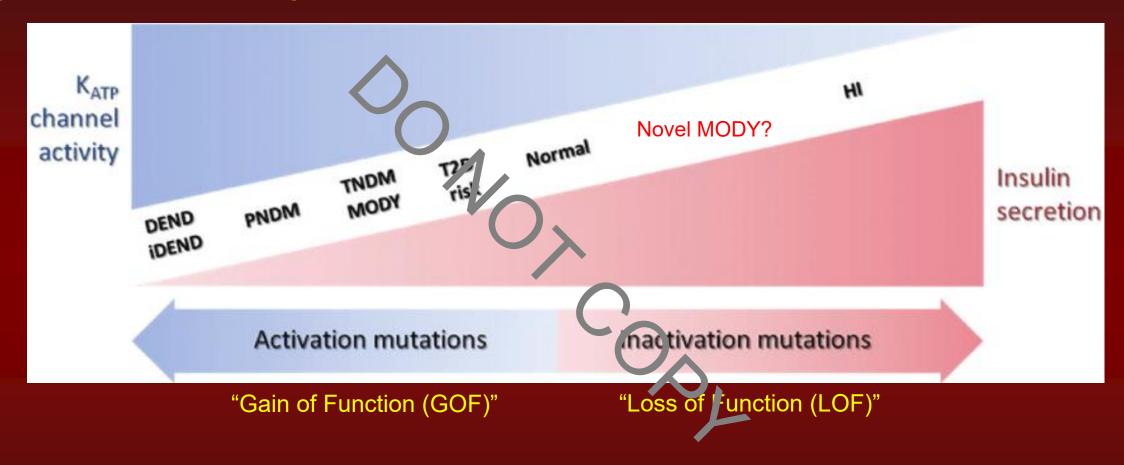


So, what benefit did Ivana get by genetic testing?


If genetic testing was not done Thanks to genetic testing 16,060 insulin injections over Insulin stopped, still on SU, 16,060 injections 11 years avoided till now. Cost of neonatal DM testing - Rs. 2,000 Total cost of insulin -**IGBP17**] was done free of cost ~ Rs. 214,000 [GBP 1800] Cost of glucose monitoring -Cost of SU over 11 years - Rs. 8,030 [GBP 68] Rs. 102,000 [GBP 870] Total amount spent by the family Total cost -Rs. 316,000 [GBP 2700] over 11 Jears - Rs. 8,030 [GBP 68] Total amount saved -**Monthly income of father –** Rs. 307,970 [GBP 2632] Rs. 20,000 [GBP 170]

Does all diabetes due to ABCC8 or KCNJ11 mutations respond to SU?

- GOF mutations in ABCC8/KCNJ11 have traditionally been associated with diabetes (NDM, MODY 12/13), while LOF mutations with hypoglycemia (CHI)
- We have recently reported on 20 individuals with LOF mutations in ABCC8, who presented with young-onset diabetes with no history of hypoglycemia


What could be the mechanism of diabetes in these cases?

Mohan et al, J Assoc Physicians India, 2025

- SU are unlikely to work in these cases
- We suggest that diabetes due to LOF mutations in ABCC8 be termed a separate subtype of monogenic diabetes i.e. MODY 15 so as to avoid confusion with GOF mutation-associated diabetes (MODY 12 and 13) which do respond to SU

Mutations in K-ATP channel genes (ABCC8 and KCNJ11) can lead to a spectrum of clinical presentations

DEND- Developmental delay, epilepsy, neonatal diabetes; iDEND- intermediate DEND; PNDM- permanent neonatal diabetes mellitus; TNDM- transient neonatal diabetes mellitus; MODY- Maturity onset diabetes of young; T2D- type 2 diabetes. HI- hyperinsulinemia

Profile of Monogenic Diabetes in India

Diabetes Res Clin Pract. 2025 Jun 2;226:112289

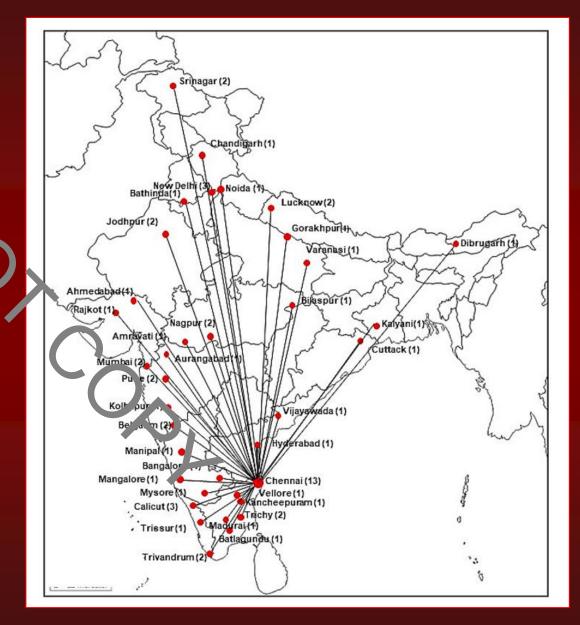
Contents lists available at ScienceDirect

Diabetes Research and Clinical Practice

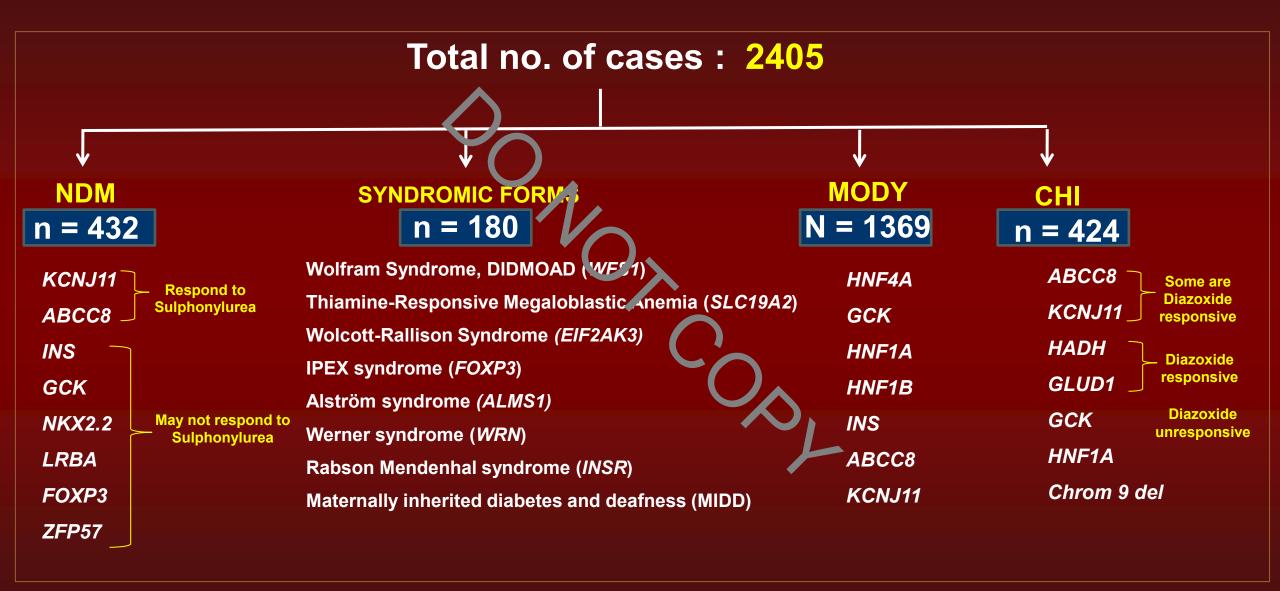
Profile of monogenic diabetes: a Pan-India study

Viswanathan Mohan a,b, a, Anandakumar Amutha a, Ramasamy Aarthy a, Subramani Poongothai a, Coimbatore Subramanian Shanthirani a, Ranjit Unnikrishnan a,b, Ranjit Mohan Anjana a,b, Sekar Kanthimathi a, Dhanasekaran Bodhini a, Phillips Routray b, Ramkumar Hemachitra c, Gowrinathan Thannoli Gowthami c, Sridevi A. Naaraayan c, Pichakacheri Sureshkumar a, Banshi Saboo c, Shariq Masoodi f, Jayaram Shruthi f, Madhumitha Singh f, Idrees A Shah f, Vijay Viswanathan g, Radhakrishnan Chandni a, Neeraj Manikath h, Palani Raghupathy f, Sukanya Priyadarshini o, Vandana Jain f, Rajni Sharma h, Neeta Deshpande f, Chittaranjan Sakerlal Yajnik f, Smita Dhadge f, Kalpana Jog f, Sandeep Rai m, Mallikarjun V. Jali n, Sujatha M. Jali n, Shaila Pachapure n, Shivani Sidana o, Muthu Ramuu b, Dhanasekaran Killivalavan b, Arunkumar R. Pande p,q, Venkatesan Radha a, PAN INDIA Monogenic Study Collaborators Group from India

- ^a Madras Diabetes Research Foundation (ICMR Collaborating Centre of Excellence), Chennai, India
- b Dr. Mohan's Diabetes Specialities Centre (IDF Centre of Excellence in Diabetes Care), Chennai, India
- c Institute of Child Health and Hospital for Children, Chennai, India
- d Dr. Suresh's Diab Care India, Calicut, India
- e Diabetes Care Hormone Clinic, Ahmedabad, India
- f Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
- ⁸ M. V. Hospital for Diabetes, Chennai, India
- h Government Medical College, Calicut, India
- i Sagar Centre for Diabetes, Bangalore, India
- J All India Institute of Medical Sciences, New Delhi, India
- k Belgaum Diabetic Centre, Belgaum, India
- 1 King Edward Memorial Hospital & Research Centre, Pune, India
- m MGM Institute of Health Sciences, Mumbai, India
- n KLE's Dr. Prabhakar Kore Hospital & Medical Research Centre, Belgaum, India
- o All India Institute of Medical Sciences, Bathinda, India
- P Lucknow Endocrine Diabetes and Thyroid Clinic, Lucknow, India
- q Health City Vistaar, Lucknow, India


ARTICLE INFO

Keywords: Monogenic diabetes MODY MIDD


ABSTRACT

Aim: To evaluate the frequency of monogenic diabetes mutations among individuals clinically suspected to have monogenic diabetes in India.

Methods: Participants (n = 774) were recruited from 65 diabetes centres across India (http://monogenicdiabetes. in/Collaborators.html). Inclusion criteria were: age at diagnosis of diabetes ≤30 years; family history of diabetes in one or both parents; BMI ≤ 30 kg/m²; and absence of ketonuria. Monogenic diabetes was diagnosed based on pathogenic/ likely pathogenic mutations as per the American College of Medical Genetics and Genomics (ACMG) and Association of Medical Pathology (AMP) guidelines.

INDIAN MONOGENIC DIABETES REGISTRY

http://www.monogenicdiabetes.in/

Outline of my talk

Background

Clinical Care

Research

Conclusions

Conclusions

Diabetes care in India is the art of the POSSIBLE!

Even in a resource-constrained setting, it is POSSIBLE to.....

- Build and expand a state-of the art system to provide affordable, accessible diabetes care
- Engage in research of international standards
- Develop and expand capacity
- Reach out to underserved and marginalized populations

But...

What makes it POSSIBLE is TEAMWORK!

OUR TEAM OF DOCTORS

Heads of Departments

Scientists

