

# Chronic kidney disease: Primary care's key role

Dr. /Indrew Frankel
Consultant Nephrologist

Imperial College Kidney & Transplant Institute





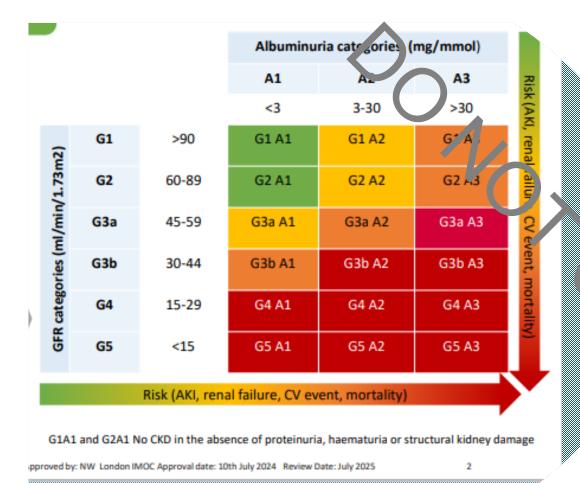




# Imperial College Healthcare

# Dr Andrew Frankel Declarations

- Receipt of research grants
- Preparation of educational materials
- Attendance at drug advisory boards
  - Boehringer Ingleheim
  - Lilly
  - Astra Zeneca
  - Menarani
  - Bayer
  - Novo Nordisk
  - Proteomics International




# **Summary and Objectives**

- The growth in CKD (driven by the increasing numbers of people with diabetic kidney disease) constitutes a major healthcare emergency
- Over the last 10 years there have been significant advances in relation to treatment of chronic kidney disease
- In this presentation I will provide a clearer understanding of
  - Who is at risk and who to screen
  - How to effectively and safely optimise the persenwith diabetes and CKD
  - Familiarise yourselves with resources available to support yourselves and your patients.



# **Definitions**



# Chronic Kidney Disease

CKD is defined as abnormalities of kidney structure or function, present for a minimum of 3 months, with implications for health. (1)

# Kidney Health Check

Blood (eGFR) orine ACR Urine dip haematuria (≥ 1+) Blood pressure

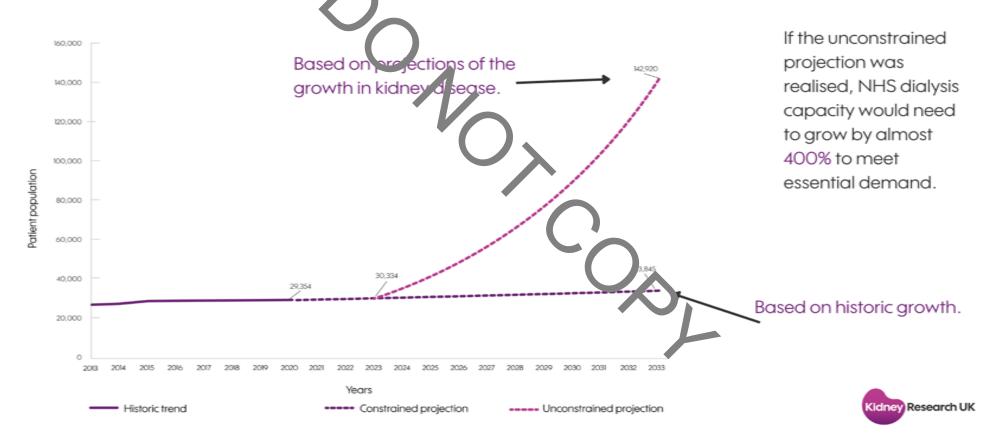
# 'Public health emergency': 2023 Kidney Research UK report highlights the increasing burden of CKD

>10%

of the UK population (7.2 million people) are estimated to have CKD, and this number is growing over time



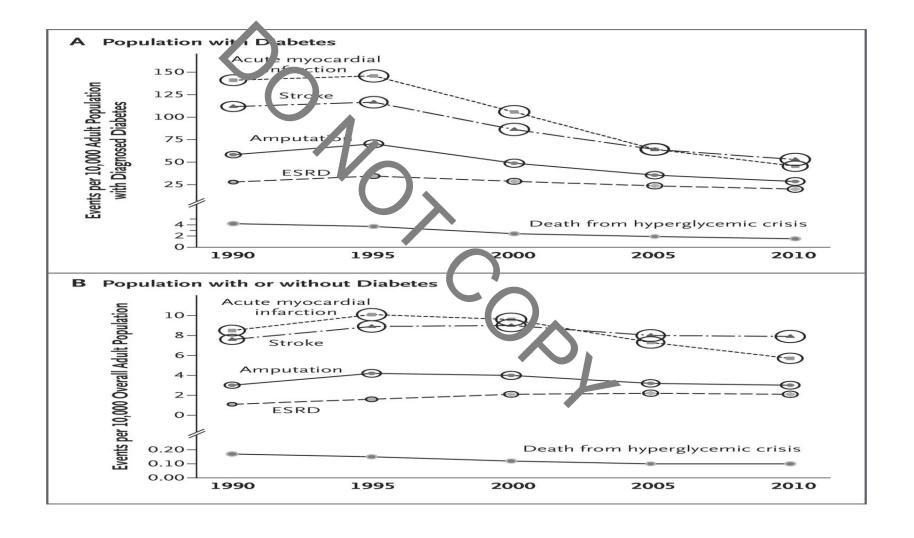
CKD is the tenth biggest killer worldwide today, projected to be the fifth leading cause of lost life years by 2040




Total annual UK economic burden of kidney disease is £7 billion; this cost could nearly double over the next 10 years, largely driven by increasing demand for dialysis\*

CKD: chronic kidney disease.

<sup>\*</sup>This is the unconstrained view, which estimates the number of people who may need dialysis based on how quickly people progress through the stages of kidney disease, and factors in all potential unmet need.

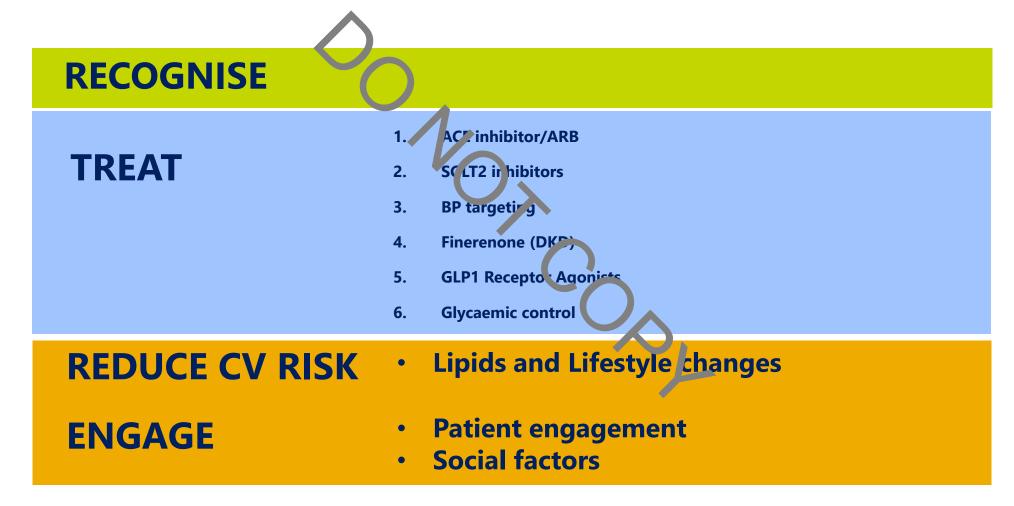

Around 30,000 adults and children were on dialysis for kidney failure in 2023. This could grow to as much as 143,000 by 2033.



Global estimates of diabetes Europe 59.8 million 71.1 million Middle East and **North Africa Western Pacific** 2015 **35.4 millio** 2015 **153.2** million 72.1 millio 2040 **214.8 million** 6.3 million 2040 140.2 million South and **Africa** Central America 2015 14.2 million 2015 **29.6 million** 2040 **34.2 million** 2040 **48.8 million** HOLISTIC MULTI DISCIPLINARY


# Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Changes in Diabetes-Related Complications Imperial College Healthcare Changes in Changes i in the United States, 1990–2010






# Management of DKD: 2025





# Management of CKD: 2025




=OUNDATION

# Recognition



# **Recognition – The Kidney Health Check**



#### Reduced eGFR

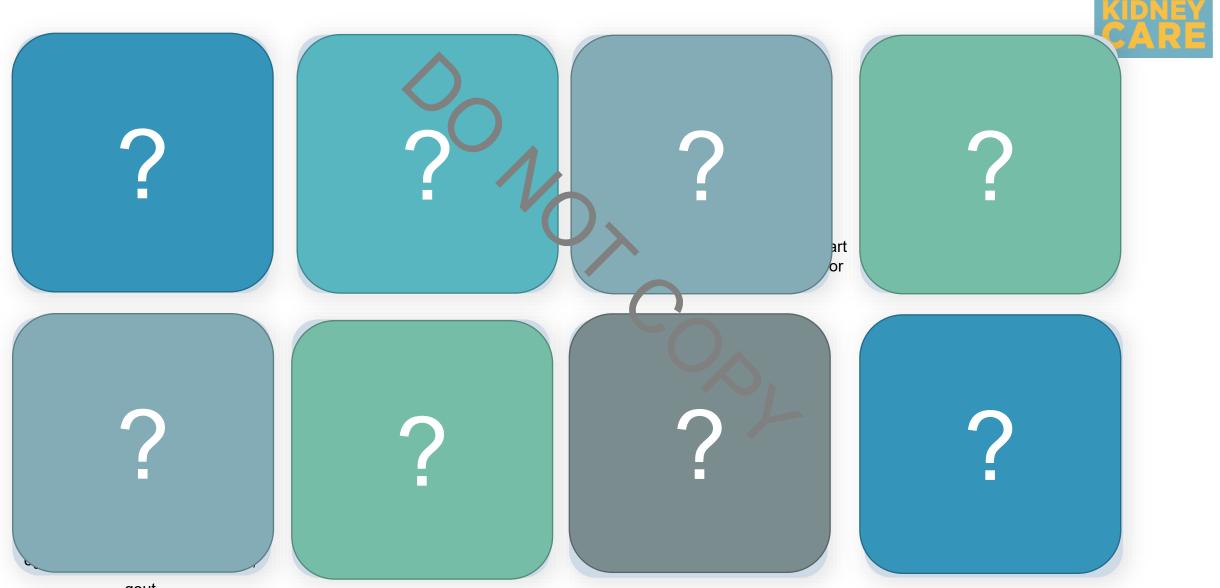
Creatinine clearance is reduced





eGFR is an important indicator of CV risk and progression<sup>2</sup>

eGFR testing alone does not give a true picture of a patient's risk of worsening outcome; such as DKD progression and MACE


- eGFR: estimated glomerular filtration rate; CV: cardiovascular; DKD: diabetic kidney disease; MACE: major adverse cardiovascular events.
- Reidy K, et al. J Clin Invest 2014;124:2333-40.
- NICE Guideline CG182. Chronic kidney disease in adults: assessment and management. July 2014. [Accessed July 2020]. www.nice.org.uk/guidance/cg182

#### **Albuminuria**

Protein leaks through glomerular basement membrane<sup>1</sup>



## Who should be screened? – Reveal the hidden boxes



#### Who should be screened?



#### Diabetes



Yearly

Hyp⁄₄rter sion



Yearly, or up to 5 yearly if BP well controlled

Cardio Vascular Disease



failure, peripheral vascular disease or cer biol vascular disease

Acute kidney Injury



Yearly for 3 years

# Multisystem diseases



eg arthritis, lupus, HIV, psoriasis,

Structural renal tract disease



e.g. prostate hypertrophy, renal calculi

Incidental hematana r proteinuria



Family Hx of kidney failure



Eg. Polycystic kidney disease

gout

# **Primacy of Lifestyle Intervention**



#### Six pillars of lifestyle medicine









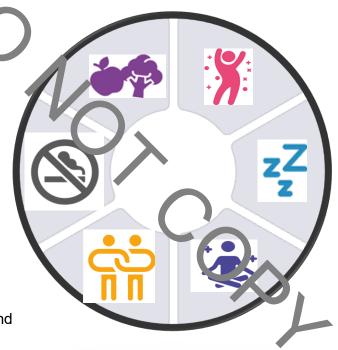


#### Eat



Predominantly whole food, plant-based diet emphasising nutrient density and appropriate caloric intake. Personalized nutritional plans consider cultural preferences and specific metabolic needs.

#### **Avoidance of Harmful Substances**




Support for reducing or eliminating tobacco, excessive alcohol, and other substances with negative cardiometabolic effects.

#### Connect



Fostering meaningful relationships and community engagement. Groupbased interventions and peer support to enhance treatment adherence and outcomes.



#### Move



Regular movement combining cardiovascular exercise, strength training, and flexibility work. Tailored to individual capability and gradually increased to meet recommended guidelines.

#### Sleep

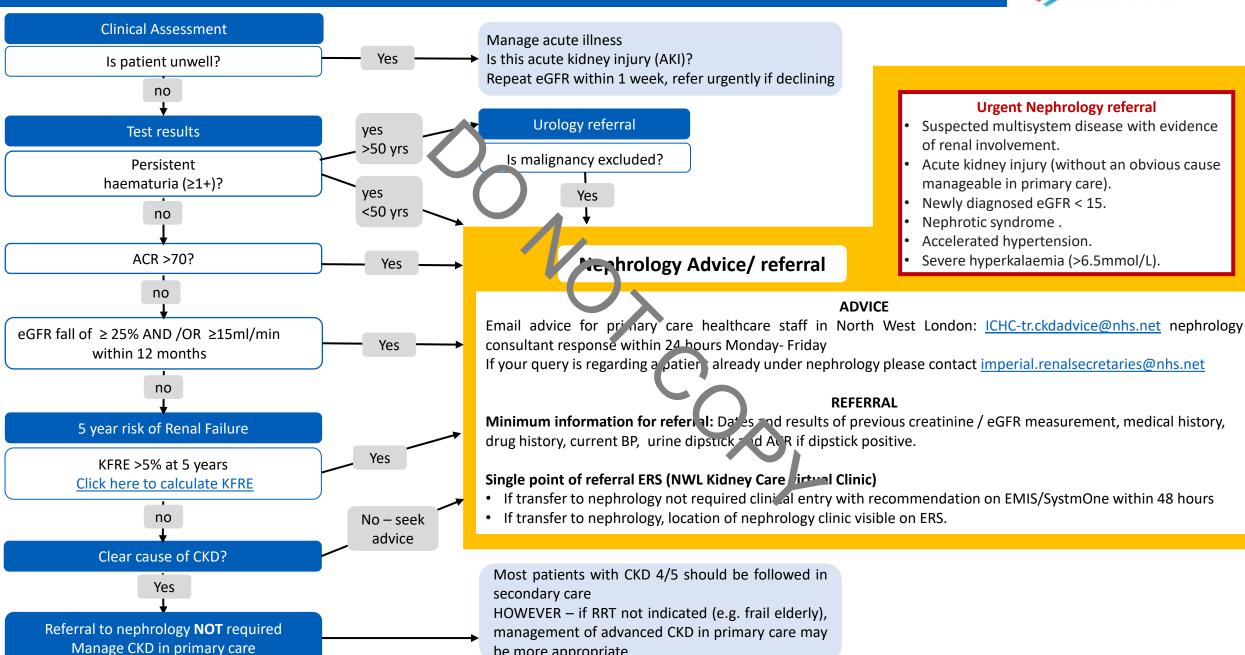
Optimising sleep duration and quality through evidencebased sleep hygiene practices. Addressing sleep disorders that impact cardiometabolic health.

#### Relax



Techniques to reduce psychological stress including mindfulness, meditation, and cognitive behavioral approaches. Focus on building resilience against chronic stressors.

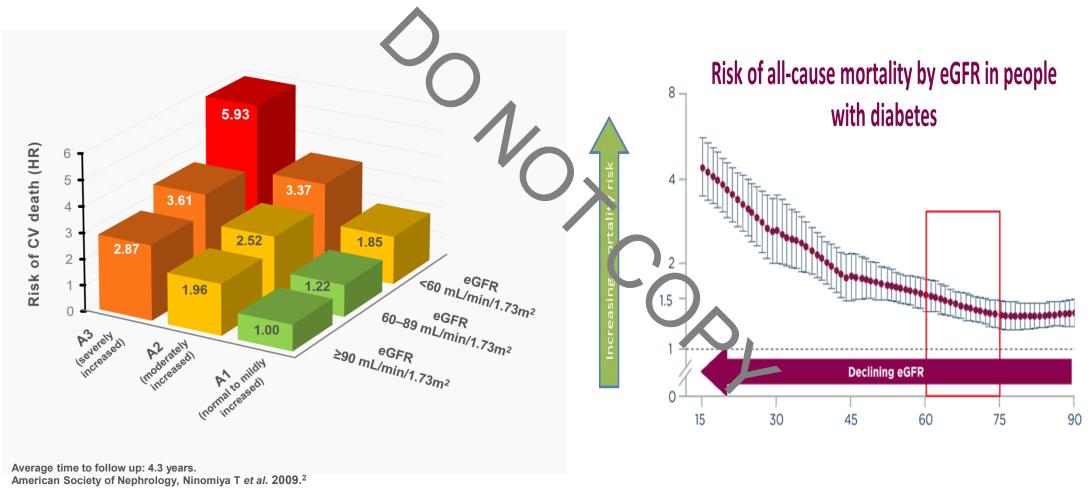
These pillars work synergistically within the CRM pathway, with interventions tailored based on individual assessment results. Patients are empowered to select priority areas for change, supported by appropriate clinical resources and behavior change techniques to build sustainable healthy habits.




# **How Early is Early?**



#### Chronic Kidney disease – Referral algorithm






be more appropriate



# **How Early is Early**

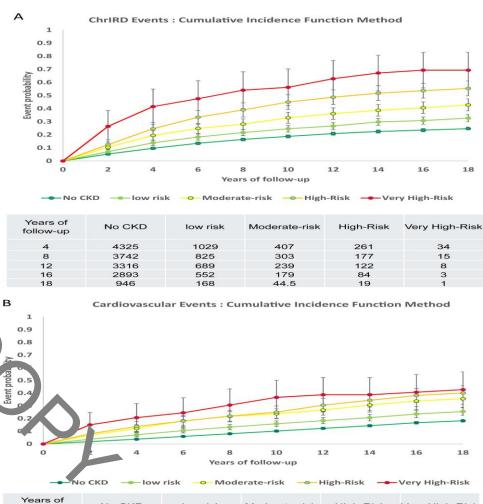


# Inflammatory and Cardiovascular Events in CKD: The Multi-Ethnic Study of Atherosclerosis (MESA)

| A                                   |             |                       |              |   |             |             |
|-------------------------------------|-------------|-----------------------|--------------|---|-------------|-------------|
| Combination categories of eGFR UACR |             | UACR categor es (mg/ç |              |   |             |             |
|                                     |             | A1a                   | A1b          | П | A2          | А3          |
|                                     |             | (< 10 mg/g)           | (10–29 mg/g) | ( | 0–299 mg/g) | (≥ 300 g/g) |
| eGFR categories<br>(ml/min/1.73m²)  | G1 (≥ 90    | 1a                    | 1b           |   | 2           |             |
|                                     | G2 (60–8    | 1a                    | 1b           |   | 2           | 3           |
|                                     | G3a (45–5   | 3                     | 3            |   | 3           | 4           |
|                                     | G3b (30–44) | 3                     | 3            |   | 4           | 4           |
|                                     | G4 (15–29)  | 4                     | 4            |   | 4           | 4           |
|                                     | G5 (< 15)   | 4                     | 4            |   | 4           | 4           |

| В                            |                                                                                             |  |  |
|------------------------------|---------------------------------------------------------------------------------------------|--|--|
| Modified CKD risk categories | Definitions eGFR (ml/min/1.73m²) UACR (mg/g)                                                |  |  |
| No CKD (1a; dark green)      | eGFR ≥60 and UACR <10                                                                       |  |  |
| Low-risk (1b; light green)   | eGFR ≥ 60 and UACR 10-29                                                                    |  |  |
| Moderate-risk (2, yellow)    | eGFR ≥60 and UACR 30-299                                                                    |  |  |
| High-risk (3, orange)        | (eGFR 30-59 and UACR <30) or<br>(eGFR 45-59 and UACR 30-299) or<br>(eGFR ≥60 and UACR ≥300) |  |  |
| Very High-risk (4, red)      | eGFR < 30 or<br>(eGFR 30-44 and UACR 30-299) or<br>(eGFR 30-59 and UACR ≥ 300)              |  |  |

In this study, the authors used a large community-based sample from the Multi-Ethnic Study of Atherosclerosis to evaluate the likelihood of, and risks associated with, inflammatory conditions with worsening kidney function. They studied a novel diagnostic entity called chronic inflammationrelated disease (ChrIRD) encompassing several infectious and noninfectious inflammatory conditions. Over 19 years of follow-up, they demonstrated progressively higher risk of CarlP.D with worsening kidney function. The risks of ChrIRD are apparent in individuals with low levels of proteinuria and exceed cardiovascular disease at most stages of kidney function.

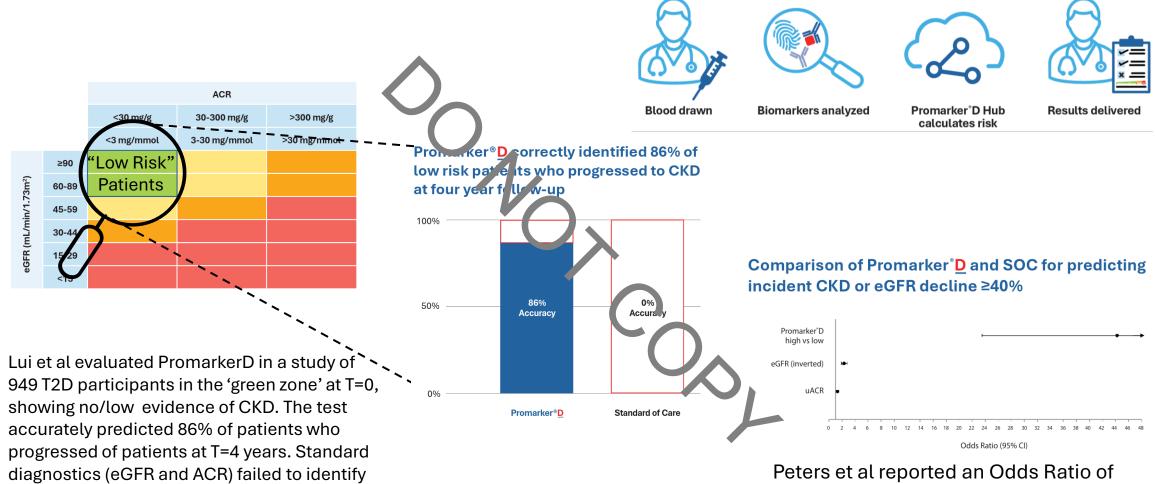

American Journal of Kidney Diseases 2025 86178-191.e1DOI: (10.1053/j.ajkd.2025.03.020)

# All Cause Death : Kaplan-Meier Method 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1 0 0 2 4 6 8 10 12 14 16 18

Years of follow-up

| Years of follow-up | No CKD | low risk | Moderate-risk | High-Risk | Very High-Risk |
|--------------------|--------|----------|---------------|-----------|----------------|
| 4                  | 4669   | 1139     | 467           | 306       | 48             |
| 8                  | 4485   | 1079     | 424           | 276       | 40             |
| 12                 | 4231   | 974      | 365           | 221       | 28             |
| 16                 | 3874   | 810      | 298           | 164       | 15             |
| 18                 | 1245   | 233      | 72            | 34        | 3              |

→ No CKD → low risk → Moderate-risk → High-Risk → Very High-Risk




No CKD low risk Moderate-risk Very High-Risk follow-up 

American Journal of Kidney Diseases 2025 86178-191.e1DOI: (10.1053/j.ajkd.2025.03.020)

Copyright © 2025 National Kidney Foundation, Inc. Terms and Conditions

# PromarkerD – a Prognostic CKD Test for T2D



REFERENCES

any of those who progressed.

Lui, JKC et al. (2025). Analytical and clinical performance of a novel immunoassay-based test system to predict diabetic kidney disease. Journal of Applied Laboratory Medicine.

Peters et al., 2025. Next-Generation PromarkerD vs. Standard of Care for Assessing Kidney Function Decline in Type 2 Diabetes. American Diabetes Association Late-Breaking Poster. June 20-23. Chica go, IL. Diabetes 13 June 2024; 74 (Supplement\_1): 1862–LB. doi.org/10.2337/db25-1862-LB

Peters et al reported an Odds Ratio of 44.3 (95% CI, 24.0-83.5) for PromarkerD (high vs low) as compared to 2.3 for eGFR and 1.3 for ACR.

# How Quickly is Quickly?



# **London Kidney Network "3in3" Initiative**

key actions within 3 months to save lives

In adults <u>with Type 2 diabetes</u> and CKD (uACR > 3mg/mmol)

In adults with albuminuria, without Type 2 diabetes

(uACR ≥ 22.6mg/mmol and eGFR 45 
75ml/minute/1.73m² OR eGFR 20 to 45 irrespective

of ACR

1

2

3

ACTION 1 Maximum intensity RAS/ RAAS blockade

ACTION 2 Initiate SGLT-2 inhibitor according to license

ACTION 3 Initiate further blood pressure agent to achieve BP target

# Guidelines Emphasise Optimising RAASi Therapy for Patients With CKD and HF<sup>1-3</sup>

#### Chronic Kidney Disease

KDIGO 2024 Clinical Practice Guideline For the Evaluation and Management of CKD<sup>1</sup>

RASi (ACEi or ARB) should be administered using the **highest approved dose that is tolerated** to achieve the benefits described because the proven benefits were achieved in trials using these doses<sup>a</sup>

#### Heart Failure

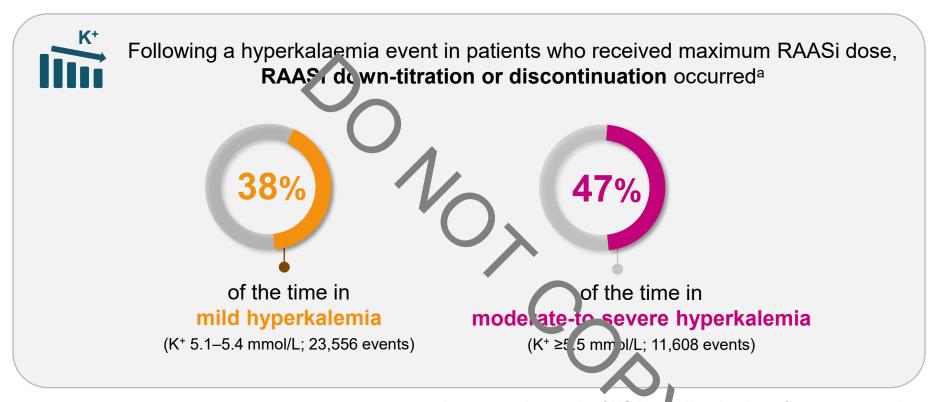
2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic HF<sup>2</sup>

ACEi and MRA are recommended for patients with HFrEF to reduce the risk of his population and death (1A)<sup>b</sup>

Sacubitril/valsartan is recommended as a replacement for an ACEi in patients vith HF/EF to reduce the risk of HF hospitalis alon and death (1B)<sup>c</sup>

RAASid therapy should be up-titrated to the **highest tolerated doses** 

#### 2022 AHA/ACC/HFSA Guideline for the Management of HF<sup>3</sup>


In patients with HFrEF, titration of guideline-directed medication dosing, including RAASi,<sup>e</sup> to achieve **target doses** showed to be efficacious in RCTs is recommended, to reduce cardiovascular mortality and HF hospitalisations, unless not well tolerated (1A)<sup>f</sup>

aln the KDIGO 2024 CKD guideline, this is a practice point that are consensus-based statements representing the expert judgement of the Work Group and are not graded. Users should consider the practice point as expert guidance and use it as they see fit to inform the care of patients; <sup>1</sup> bRecommendation (1A) in the 2021 ESC guideline: Class I = evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective and Level of evidence A = data derived from multiple RCTs or meta-analyses; <sup>2</sup> Recommendation (1B) in the 2021 ESC guideline: Class I = evidence and/or general agreement that a given treatment or procedure is beneficial, useful, effective and Level of evidence B = data derived from a single RCT or large non-randomised studies; <sup>2</sup> RAASi therapy includes ACEi, ARNI, and MRA. ARBs can be used if intolerant to ACEi or ARNI; <sup>2</sup> RAASi therapy includes ACEi, ARB, ARNI, and MRA (spironolactone or eplerenone); <sup>3</sup> Recommendation (1A) in the 2022 AHA/ACC/HFSA guideline: Class 1 = Strong (benefit >>> risk) and Level of Evidence A = High-quality evidence from more than 1 RCT; meta-analyses of high-quality RCTs; one or more RCTs corroborated by high-quality registry studies.<sup>3</sup>

ACC = American College of Cardiology; ACEi = angiotensin-converting enzyme inhibitor; AHA = American Heart Association; ARB = angiotensin II receptor blocker; ARNI = angiotensin receptor-neprilysin inhibitor; CKD = chronic kidney disease; ESC = European Society of Cardiology; HF = heart failure; HFrEF = heart failure with reduced ejection fraction; HFSA = Heart Failure Society of America; KDIGO = Kidney Disease: Improving Global Outcomes; MRA = mineralocorticoid receptor antagonist; RAASi = renin-angiotensin-aldosterone system inhibitor; RASi = renin-angiotensin system inhibitor; RCT = randomised controlled trial.

1. KDIGO CKD Work Group. Kidney Int. 2024;105(4S):S117-S314; 2. McDonagh TA et al. Article and supplementary data. Eur Heart J. 2021;42(36):3599-3726; 3. Heidenreich PA et al. J Am Coll Cardiol. 2022;79(17):e263-e421.

# Hyperkalaemia Is a Barrier to Maximum RAASi Dose

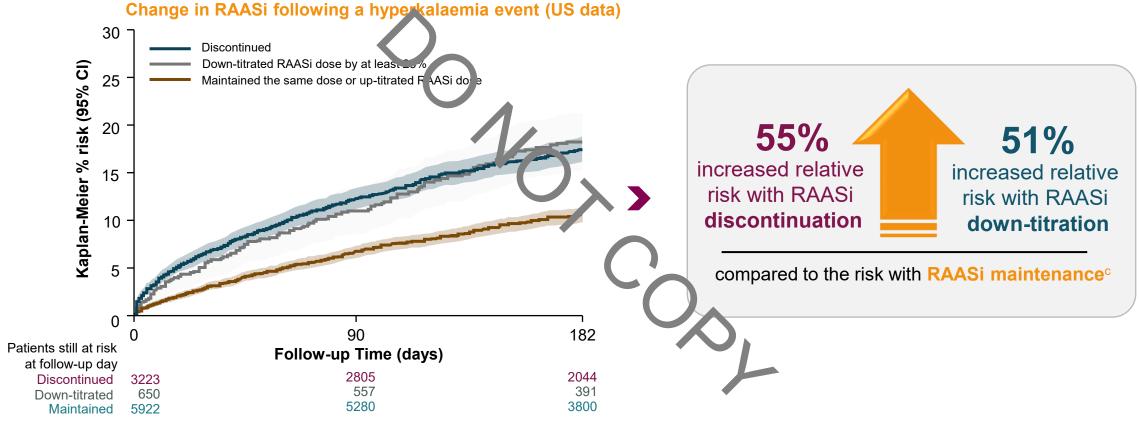


A retrospective study of US Hun edica database from 2007 to 2012

**Note:** Study of electronic health records (N >200,000) of patients with various comorbidities (including cardiorenal ones) who were ≥5 years of age with ≥1 outpatient RAASi prescription, and ≥2 serum K⁺ readings.

<sup>a</sup>An event-level analysis was done to examine RAASi dose changes following hyperkalaemia events in patients on maximum RAASi dose where maximum = labelled dose; down-titration = submaximum dose of any RAASi lower than the labelled dose; discontinued = absence of RAASi prescriptions for a period of >390 days subsequent to prior prescription. RAASi included ACEi, ARB, direct renin inhibitor, and select MRA.

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; K<sup>+</sup>, potassium; MRA, mineralocorticoid receptor antagonist; RAASi, reninangiotensin-aldosterone system inhibitor; US, United States.


Epstein M, et al. Am J Manag Care. 2015;21(Suppl 11):S212-S220.





# RAASi Down-titration and Discontinuation Was Associated With Increased Risk of Morbidity in Cardiorenal Patients

Risk of the composite outcome of progression to ESKD<sup>a</sup> and HF-related hospitalisations<sup>b</sup>



Adapted from Kanda E. et al. BMC Nephrol. 2023.

Note: An observational study that utilised the US claims and EHR data from July 2019 and September 2021 in 15,488 adult patients with CKD Stage 3 or 4 and/or HF who experienced an index hyperkalaemia event (ICD-10 or ICD-9 diagnosis codes) and had ≥1 filled RAASi prescription within 6 months before the index hyperkalaemia event. RAASi included ACEi, ARB, ARNI, and MRA. alnitiation of haemodialysis or a diagnosis of ESKD or CKD Stage 5 in any position recorded in hospital, emergency, or outpatient setting; blospitalisations with HF or emergency visits for HF; cp<0.001 for each comparison. Adjusted for age, sex, history of hyperkalaemia, diabetes, HF, CKD including stage, and baseline use of ACEi, ARB, ARNI, and MRA. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; ARNI, angiotensin receptor—neprilysin inhibitor; CI, confidence interval; CKD, chronic kidney disease; EHR, electronic health record; ESKD, end-stage kidney disease; HF, heart failure; ICD, International Classification of Diseases 9th or 10th revisions; MRA, mineralocorticoid receptor antagonist; RAASi, renin-angiotensin-aldosterone system inhibitor; US, United States. Kanda E, et al. BMC Nephrol. 2023;24(1):18.





# The 2024 KDIGO CKD Guideline Provides A Stepwise Approach To Hyperkalaemia Management and States Reducing RAASi Only After Other Measures Have Failed<sup>1</sup>

#### Algorithm for monitoring potassium and eGFR after ACEi/ARB initiation

#### Initiate ACEi or ARB Monitor serum creatinine and L. (within 2-4 weeks after starting or changing do Normokalemia Hyperkalemia ≥30% (cr ase in eGFR <30% decrease in Review for causes of AKI **Review concurrent drugs eGFR** Correct volume depletion Moderate dietary K<sup>+</sup> intake Reassess concomita it Consider: medications Diuretics (eg, diuretics, NSAIDs) Increase dose of Sodium bicarbonate **Consider renal artery** ACEi or ARB or K<sup>+</sup> binders<sup>a</sup> stenosis continue on maximally tolerated dose Reduce dose or stop ACEi or ARB if mitigation strategies ineffective

#### Actions to hyperkalemia<sup>b</sup> management in CKD

#### 1st line: Address correctable factors

- Review non-RAASi medications (e.g. NSAIDs, trimethoprim)
- Assess dietary potassium intake (dietary referral) and consider appropriate moderation of dietary potassium intake



#### 2<sup>nd</sup> line: Medications

- Appropriate use of diuretics
- Optimise serum bicarbonate levels
- Licensed potassium exchange agents<sup>c</sup>



#### 3rd line: Last resort

 Reduce dose or discontinue RASi/MRA (discontinuation is associated with increased cardiovascular events. Review and start RAASi or MRA at a later date if patient condition allows)

**Note:** RASi includes ACEi or ARB. aSuch as SZC and patiromer; bK+ >5.5 mmol/L; cSZC, patiromer, and sodium/calcium polystyrene sulfonates.

ACEi, angiotensin-converting enzyme inhibitor; AKI, acute kidney injury; ARB, angiotensin II receptor blocker; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; K<sup>+</sup>, potassium; KDIGO, Kidney Disease: Improving Global Outcomes; MRA, mineralocorticoid receptor antagonist; NSAIDs, nonsteroidal anti-inflammatory drugs; RAASi, renin-angiotensin-aldosterone system inhibitor; RASi, renin-angiotensin system inhibitor; SZC, sodium zirconium cyclosilicate.

KDIGO CKD Work Group. *Kidney Int.* 2024:105(Suppl 4S):S117–S314.

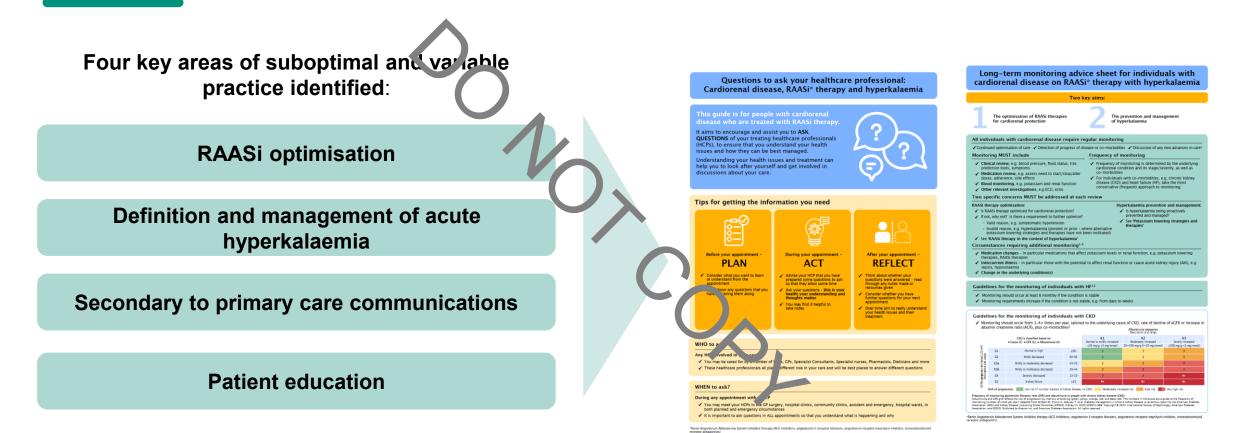




# **UK Hyperkalaemia Steering Group:**

Overcoming hyperkalaemia as a barrier to RAASi therapy optimisation in individuals with cardiorenal disease

GB-70272 September 2025

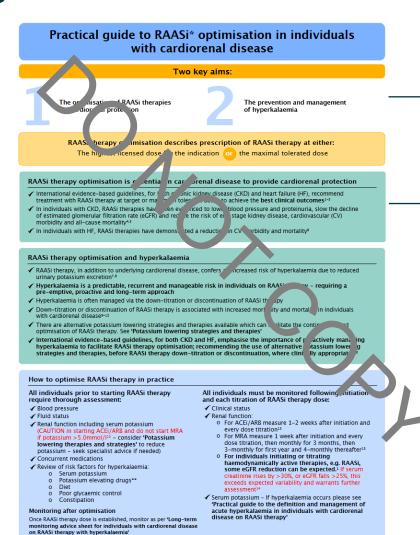

This Steering group work was initiated and funded by AstraZeneca



## Eleven practicing cardiorenal experts from across the UK

| Name               | Role                                                |
|--------------------|-----------------------------------------------------|
| Andrew Frankel     | Nephrologist London                                 |
| Stephen Wheatcroft | Cardiologist, Leeds                                 |
| Barbara Byrne      | Heart failure specialis nuse, London                |
| Darren Green       | Nephrologist, Mancheste                             |
| Kate Bramham       | Nephrologist, London                                |
| Mandie Welch       | Heart failure specialist nurse, South Wales         |
| Ruby Chumber       | Renal pharmacist, Advanced practitioner, Neutingham |
| Sarah Davies       | GP, Cardiff                                         |
| Simon G Williams   | Cardiologist, Manchester                            |
| Ahmet Fuat         | GP, Co Durham                                       |
| William Priestman  | GP, Leicester                                       |
|                    |                                                     |

# Focus: Overcoming hyperkalaemia as a barrier to RAASi therapy optimisation in individuals with cardiorenal disease




The steering group created a range of practical resources for use in clinical practice

# Practical guide to RAASi therapy optimisation in individuals with cardiorenal disease

Scan to access this material and other useful resources.






The 2 key treatment aims – RAASi therapy optimisation and prevention/management of hyperkalaemia - are highlighted throughout the resources

It is essential for primary and secondary care colleagues to understand the importance and practicalities of RAASi therapy optimisation - and to pre-empt hyperkalaemia as a barrier

\*Renin Angiotensin Aldosterone System inhibitor therapy (ACE inhibitors, angiotensin II receptor blockers, angiotensin receptor/neprilysin inhibitor, mineralocorticoic receptor antagonists)

# SGLT2is are Primary Care drugs The Statin of the 21st Century?





### Renal Outcomes Trials – primary cardiorenal outcomes



The primary outcomes for all above studies were composite renal outcomes.

CREDENCE:

DAPA-CKD: ESKD, CV or renal death, GFR decline ≥50%

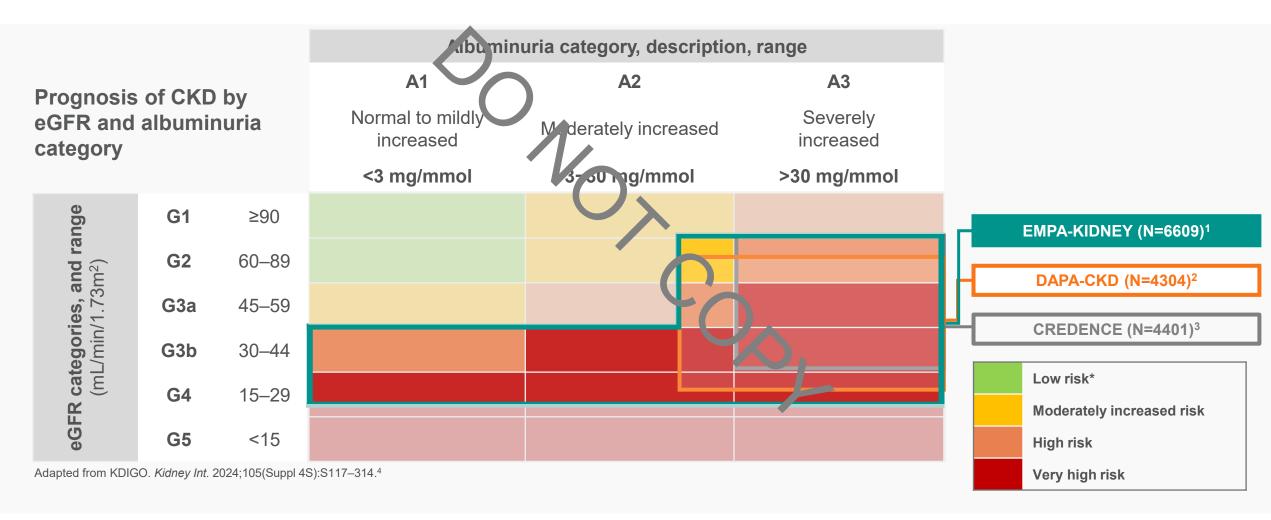
EMPA-KIDNEY: ESKD. CV or renal death. GFR decline ≥40%

ESKD, CV or renal death, doubling serum creatinine\* HR **0.70** (95% CV 0.5s to 0.82) ARR: 18 fewer events per 1000 patient-years

HR **0.61** (95% Cl, 0.57 to 0.72) ARR: 29 fewer events per 1000 patient-years

HR **0.72** (95% CI, 0.64 to 0.82) ARR: 21 fewer events per 1000 patient-years

Studies have different populations, designs and endpoints so should not be directly compared. Refer to source data for all ARRs and other detail.1-4


> ARR: absolute risk reduction HR: hazard ratio

Perkovic et al. 2019.

<sup>2.</sup> Heerspink et al 2020.

Herrington et al 2023

## **SGLT2** inhibitor Primary Renal Trials



<sup>\*</sup>If no other markers of kidney disease, no CKD.<sup>4</sup> Unit conversions are approximate.

CKD: chronic kidney disease; eGFR: estimated glomerular filtration rate; G: grade; SGLT2i: sodium-glucose co-transporter-2 inhibitor.

<sup>1.</sup> The EMPA-KIDNEY Collaborative Group. *N Engl J Med.* 2023;388:117–127; 2. Heerspink HJL *et al. N Engl J Med.* 2020;383:1436–1446; 3. Perkovic V *et al. N Engl J Med.* 2019;380:2295–2306; 4. KDIGO CKD Work Group. *Kidney Int.* 2024;105(4S):S117–314.

## What are the key considerations when prescribing SGLT2is?



Indication

Educate the patient and inform primary care<sup>1</sup>



Hypoglycaemia

When used in combination with an SU or with insulin in T2D patients with HbA1c <58 mmol/mol AND eGFR >45 mL/min/1.73m<sup>2</sup>,<sup>1</sup> UKKA recommend reducing the SU or insulin dose by 50% or 20%, respectively<sup>2</sup>



Volume depletion

Exercise caution in patients in whem a drop in blood pressure could pose a risk, such as patients with known CVD, patients on anti-hypertensive therapy with a history of hypotension or patients aged 75 years and older<sup>1</sup>

## What are the key considerations when prescribing SGLT2is?



Urinary tract/genital infection

Highlight the need to maintain good personal hygiene

 Temporary interruption of empagliflozin should be considered in patients with complicated urinary tract infections

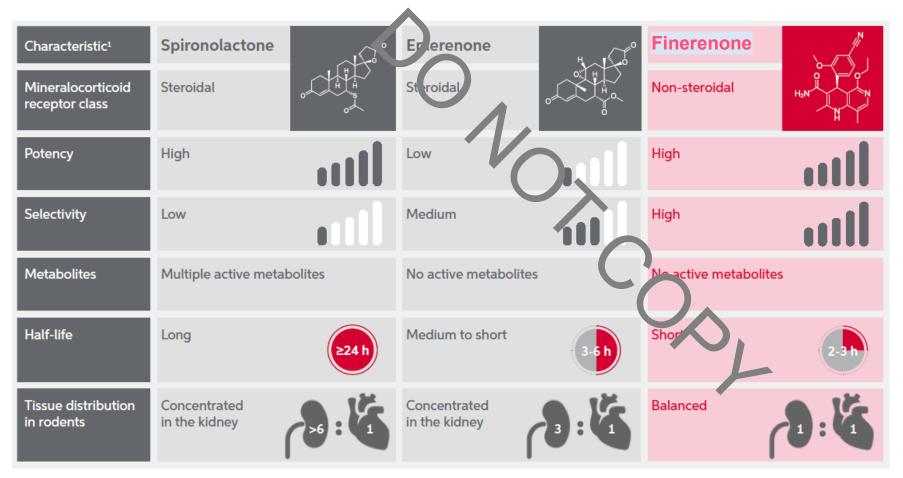


Fournier's gangrene

Rare (≥1/10 CJO to <1/1000), but serious and potentially life-threatening; advise patien s to seek medical attention if they experience a combination of paid, tenderness, erythema or swelling in the genital or perineal area, with fever or malaise

• If Fournier's gangrene is enspected, empagliflozin should be discontinued and prompt treatment should be instituted




Ketoacidosis

Counsel patients on sick-day guidance and ketoacidosis (including euglycaemic)

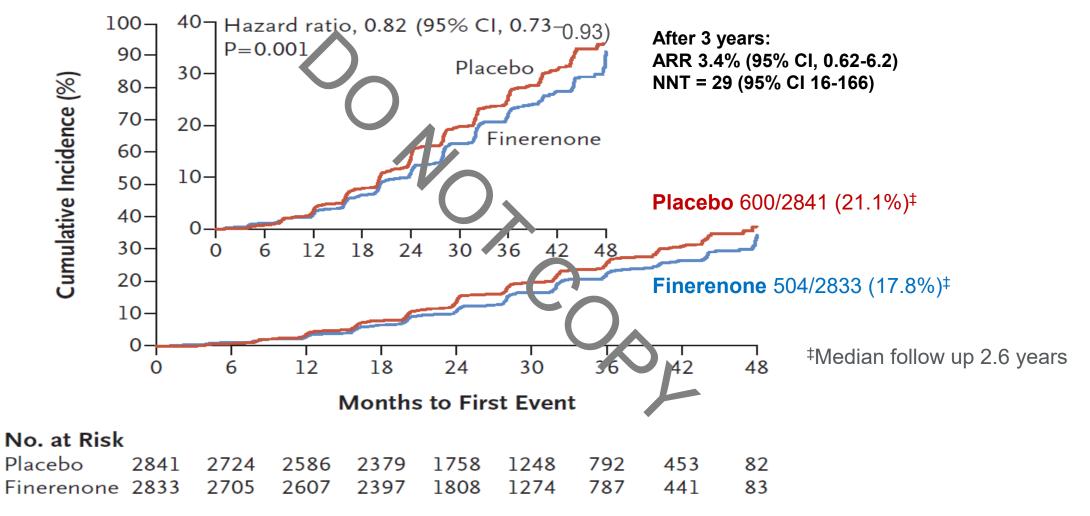
 In patients where ketoacidosis is suspected or diagnosed, treatment with empagliflozin should be discontinued immediately

# Characteristics of finerenone & currently available MRAs<sup>1</sup>





Finerenone is highly selective for the mineralocorticoid receptor, with no relevant affinity for the glucocorticoid, androgen, estrogen or progesterone receptors<sup>2</sup>


Finerenone has not been compared to currently available MRAs in phase 3 clinical trials

The clinical consequences of differences between the characteristics described is therefore unknown

## **FIDELIO - Primary Renal Composite Endpoint**



Kidney failure\*, sustained ≥40% decrease in eGFR from baseline over a period of at least 4 weeks, or death from renal causes\*



<sup>\*</sup>ESKD or an eGFR <15 ml/min/1.73 m<sup>2</sup>; #Events were classified as renal death if: (1) the patient died; (2) KRT had not been initiated despite being clinically indicated; & (3) there was no other likely cause of death;

ARR, absolute risk reduction; CI, confidence interval; ESKD, end-stage kidney disease; HR, hazard ratio; NNT, number needed to treat

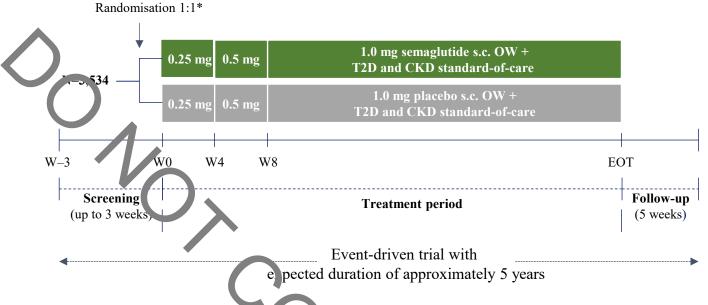


# **Finerenone Initiation Criteria (NICE 2024)**

- Adult patient
- Type 2 DM
- GFR 25 to 60
- Treated with an appropriate dose of ACEi/Ag2RB and SGLT2i or intolerant to one of these
- Persistent Albuminuria (ACR >3)
- K < 5

# There is more coming down the line!



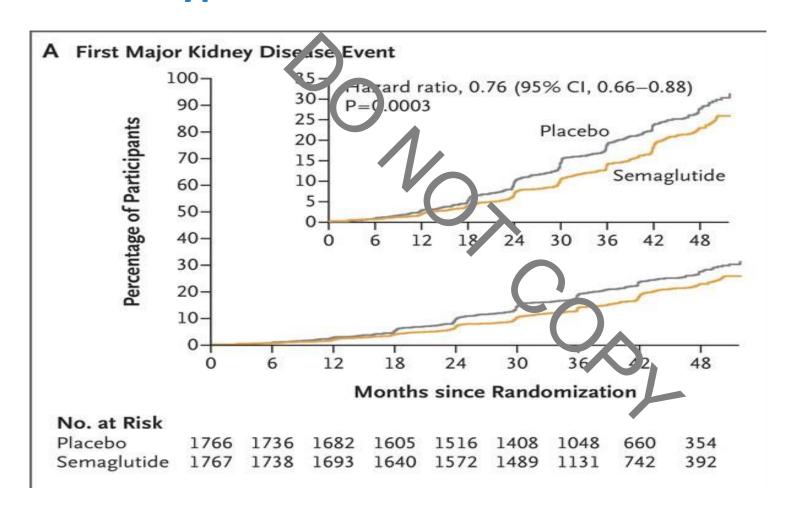

**FLOW trial design** 

#### Adults with CKD and T2D

- Age ≥18 years†
- $HbA_{1c} \le 10\% (\le 86 \text{ mmol/mol})$
- eGFR  $\geq$ 50 to  $\leq$ 75 mL/min/1.73 m<sup>2</sup> and UACR >300 to <5,000 mg/g

#### OR

- eGFR  $\ge$ 25 to <50 mL/min/1.73 m<sup>2</sup> and UACR >100 to <5,000 mg/g
- On background RAAS blockade




#### **Trial information**

- Randomised, double-blind, parallel-group, multinational phase 3b trial
- Eligibility criteria designed to select broad population with CKD and T2D and at risk for progression of CKD
- Number of participants with eGFR ≥60 mL/min/1.73 m<sup>2</sup> at randomisation was capped at 20% to ensure predominance of participants with moderate-to-severe CKD



# Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes







https://www.forkidneyssake.com/

www.nwlondonics.nhs.uk/ckdguidelines



# **Summary and Objectives**

- The growth in CKD (driven by the increasing numbers of people with diabetic kidney disease) constitutes a major healthcare emergency
- Over the last 10 years there have been significant advances in relation to treatment of chronic kidney disease
- In this presentation I will provide a clearer understanding of
  - Who is at risk and who to screen
  - How to effectively and safely optimise the persenwith diabetes and CKD
  - Familiarise yourselves with resources available to support yourselves and your patients.