

Older adult 2: Grandad

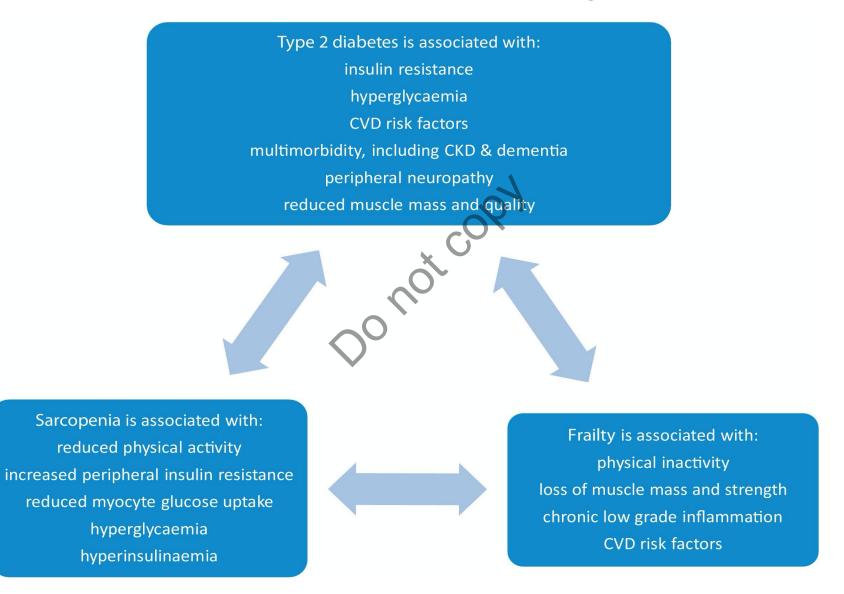
Su Down | July 2025

Disclaimer/disclosure

Su Down
Diabetes Nurse Consultant, Somerset

Committee member, PCDOS

Disclosures: Over the last 3 years I have received funding for providing educational sessions and documents from the following: Abbott, Boehringer Ingelheim, Dexcom, Lilly, Novo Nordisk, Sanofi, Viatris,


Frailty, CGM, Deprescribing, Polypharmacy

Diabetes is associated with an accelerated ageing process that promotes frailty

- Those with diabetes are up to 5x more likely to be frail
- Frailty and poor physical function overlap with obesity
- The importance of frailty in the management of type 2 diabetes in increasingly recognised
- In a systematic review of observational population-based studies, frailty is associated with a **poor survival** in a dose-response manner

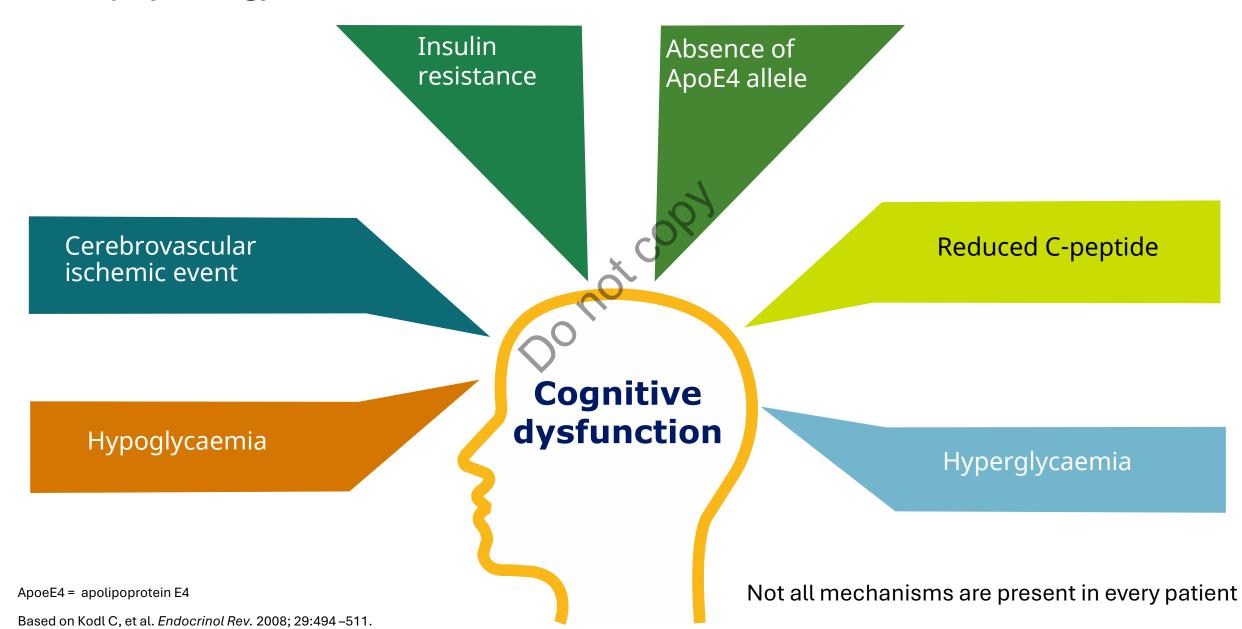
The triad of diabetes, sarcopenia and frailty creates a vicious cycle

Maintaining muscle mass is important for healthy ageing

Sarcopenia contributes to frailty 1

Additional contributing factors:

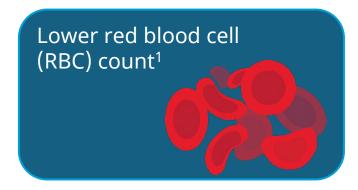
- Poor nutrition, dentition
- Low physical activity
- Complex relationship with weight ^{2,3}
- Hyper and hypoglycaemia ⁴


^{1.} Krentz, A. J. et al (2013) *Diabetic Medicine*, 30(5), pp. 535–548. doi: 10.1111/dme.12063.

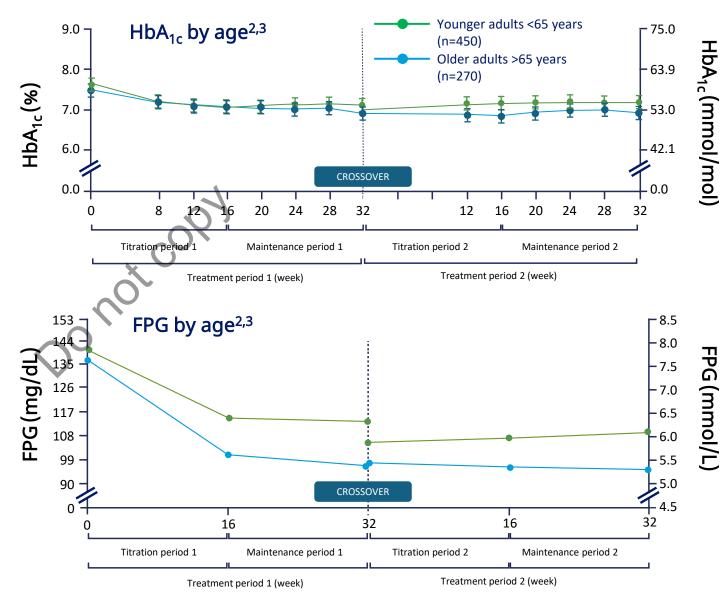
^{2.} Hubbard, RE et al (2010). *Journal of Gerontology Medical Sciences*, 65(4), 377–381. http://doi.org/10.1093/gerona/glp186

^{8.} Mezuk et al (2016). *Obesity*, 24(8), 1643–1647. http://doi.org/10.1002/oby.21572

^{4.} Abdelhafiz, A. H. et al (2015) Aging and Disease, 6(2), pp. 156-67. doi: 10.14336/AD.2014.0330


Pathophysiology – diabetes and dementia

HbA_{1c} differs for older adults


Possible explanation

Older vs younger adults

Cell membranes more friable and prone to glycosylation¹

FPG, fasting plasma glucose; HbA_{1c} , glycated haemoglobin

1 Kubota K et al. Nihon Ronen Igakkai Zasshi 1991;28(4):509–14; 2. Presented at ADA 2018, S.R. Heller et al abstract: 107-OR. 3. Heller et al. Diabetes Obes Metab 2019;21:1634-1641.

Hypoage Study –

Diabetes overtreatment and hypoglycaemia in older adults with type 2 diabetes on insulin therapy

Aims

To assess the accuracy of 'diabetes overtreatment' proxy definitions in predicting hypoglycaemia in older adults living with type 2 diabetes

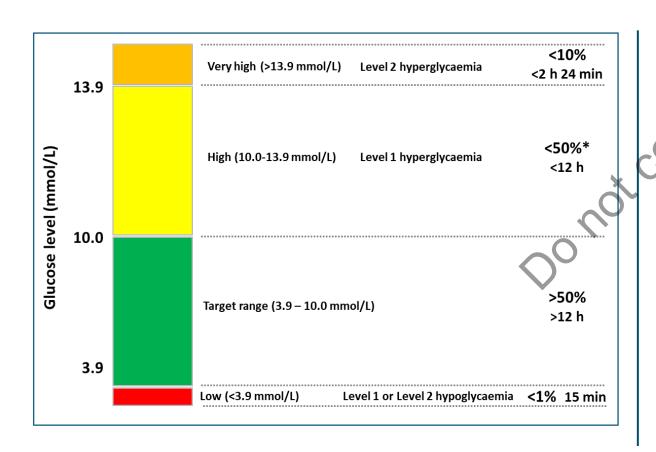
Methods

- >65 years (134)
- type 2 diabetes, insulin treated
- 28 days CGM

Definitions of 'Diabetes overtreatment'

- a) FIXED HbA1c <53mmol/mol
- b) INDIVIDUALISED HbA1c <53 <58 <64mmol/mol depending on frailty status (mild/moderate/severe)

Primary outcome Time below range (TBR) >1%


Conclusion

Proxy definitions of diabetes overtreatment poorly predict hypoglycaemia.

A new Proxy definition of diabetes overtreatment is needed

Antoine Christiaens, Anne-Sophie Boureau, Béatrice Guyomarch, Laure de Decker, Benoit Boland, Samy Hadjadj, Bertrand Cariou, HYPOAGE Study Group; Diabetes Overtreatment and Hypoglycemia in Older Patients With Type 2 Diabetes on Insulin Therapy: Insights From the HYPOAGE Cohort Study. *Diabetes Care* 2 January 2025; 48 (1): 61–66. https://doi.org/10.2337/dc24-1058

Targets for older people with type 1 or type 2 diabetes and those at high-risk from hypoglycaemia

THINKING ABOUT INDIVIDUAL TARGETS

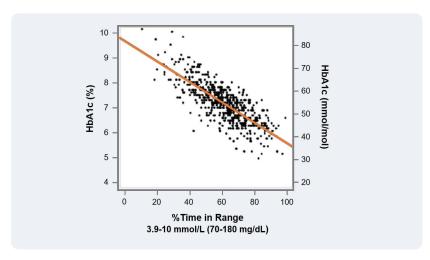
Emphasise the need to **prioritise hypoglycaemia avoidance**, reducing the %TBR <3.9 mmol/L

Recommendation is to keep %TBR <3.9mmol/L to <1% or 15 min per day

Images are for illustrative purposes only. Not real patient data.

^{*} Readings >13.9 mmol/L are also included in the <50% target

Estimate of HbA1c for a given TIR level


Data from randomized clinical trials involving adults with Type 1 or Type 2 diabetes have shown that TIR is correlated with laboratory-measured HbA1c.

ANALYSIS BY BECK ET AL¹ ANALYSIS BY VIGERSKY ET AL²

TIR	HbA1c CORRELATE % (mmol/mol)	HbA1c CORRELATE % (mmol/mol)
90 %	6.0 (42)	5.1 (32)
80 %	6.5 (48)	5.9 (41)
70 %	7.0 (53)	6.7 (50)
60 %	7.4 (57)	7.5 (58)
50 %	7.9 (63)	8.3 (67)
40 %	8.4 (68)	9.0 (75)
30 %	8.9 (74)	9.8 (84)
20 %	9.4 (79)	10.6 (92)

Every 5% (~1 hour 12 mins per day) increase in Time in Range is associated with clinically significant benefits³

THE RELATIONSHIP BETWEEN TIR AND HbA1c1

Key insights

- There is an inverse correlation –as TIR increases, HbA1c decreases
- Although highly correlated, a wide range of HbA1c values can be associated with a specific TIR and vice versa

^{*} Correlations of %TIR with HbA1c for target glucose range 3.9-10 mmol/L (70-180 mg/dL). Analysis by Beck et al is based on data in T1D, analysis by Vigersky & McMahon includes data in T1D and T2D 1. Beck RW, et al. J Diabetes Sci Technol. 2019; 13:614-626. 2. Vigersky RA and McMahon C. Diabetes Technol Ther. 2018; 21:81–85. 3. Battelino T, et al. Diabetes Care. (2019);42(8):1593-1603.

The physiology of hypos

Normal glucose suppresses insulin at 4.6 mmol/L Glucose Normal physiological homeostasis falls ↑Glucagon (3.8±0.3 mmol/L) ↑Adrenaline (epinephrine) (3.7±0.3 mmol/L) **▶**BRAIN GLUCOSE UPTAKE(3.4 MMOL/L) ↑Growth hormone (3.2 mmol/L) ↑Cortisol (3.0 mmol/L) **↓**COGNITION(2.8 MMOL/L) ↑Neurotransmitters (2.4 mmol/L) Comatose (1.9 mmol/L)

Glucose rises

Speakers own graphic

The physiology of hypos

Normal glucose suppresses insulin at 4.6 mmol/L Glucose Normal physiological homeostasis falls $(3.8\pm0.3 \, \text{mmol/L})$ ↑Adrenaline (epinephrine) (3.7±0 2.8 mmol/L **▶**BRAIN GLUCOSE UPTAKE(3.4 MMOL/L) ↑Growth hormone (3.2 ↑Cortisol (3 **↓**COGNITION(2.8 MMOL/L) ↑Neurotransmitters (2.4 .6 mmol/L Comatose (1.9 mmol/L)

Glucose rises

Speakers own graphic

Symptoms of hypoglycaemia are non-specific in older people

Autonomic:1

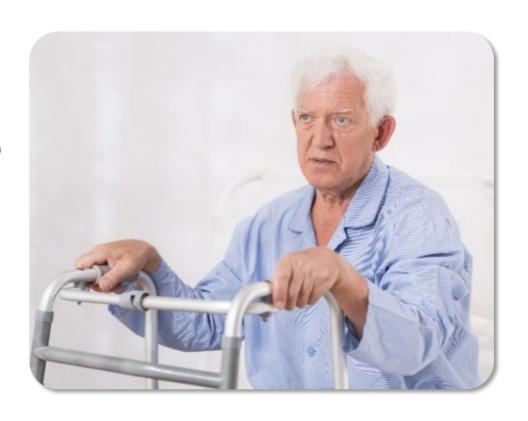
Palpitations

Sweating

Anxiety

Neuroglycopenic:1

Fatigue Irritability


Confusion Dizziness

Drowsiness Coma

Unsteadiness

Light-headedness

All these are also common in older people without diabetes

THE 4S PATHWAY

International Geriatric Diabetes Society 2025

SEEK TRIGGERS – look for signs, symptoms or factors that should act as triggers to re-evaluate treatment goals and strategies

SHARED DECISION MAKING – with the person or their care partner

SET OR RESET GOALS – which are individualised and take into account preferences and values

ensure SIMPLER AND SAFER TREATMENT – (avoiding hypoglycaemia)

Elderly living alone

- Falls
- Poor nutrition/Medication compliance
- Declining renal function
- Long overnight fasts

Areas of Concern – possible 'triggers'

Care provided by district nursing or social care services

- Timing of medication/taking of medication
- Diet

Inpatient care, Nursing and Residential homes

- Timing of medication
- Steady decline in weight and HbA1c levels no reduction in medications

Assessing for frailty

Do Not copy

Rockwood Clinical Frailty Scale

(Non-diabetes specific)

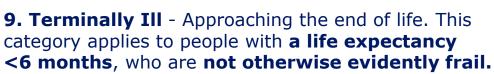
1 Very Fit – People who are robust, active, energetic and motivated. These people commonly exercise regularly. They are among the fittest for their age.

2 Well – People who have **no active disease symptoms** but are less fit than category 1. Often, they exercise or are very **active occasionally**, e.g. seasonally.

3 Managing Well – People whose **medical problems are well controlled**, but are **not regularly active** beyond routine walking.

4 Vulnerable – While **not dependent** on others for daily help, often **symptoms limit activities**. A common complaint is being "slowed up", and/or being tired during the day.

5 Mildly Frail – These people often have **more evident slowing**, and need help in **high order IADLs** (finances, transportation, heavy housework, medications). Typically, mild frailty progressively impairs shopping and walking outside alone, meal preparation and housework.


6 Moderately Frail – People need help with **all outside activities** and with **keeping house**. Inside, they often have problems with stairs and need **help with bathing** and might need minimal assistance (cuing, standby) with dressing.

7 Severely Frail – Completely dependent for personal care, from whatever cause (physical or cognitive). Even so, they seem stable and not at high risk of dying (within ~ 6 months).

8 Very Severely Frail – Completely dependent, approaching the end of life. Typically, they could not recover even from a minor illness.

Scoring frailty in people with dementia

The degree of frailty corresponds to the degree of dementia. Common **symptoms in mild dementia** include forgetting the details of a recent event, though still remembering the event itself, repeating the same question/story and social withdrawal. In **moderate dementia**, recent memory is very impaired, even though they seemingly can remember their past life events well. They can do personal care with prompting. In **severe dementia**, they cannot do personal care without help.

How did we find the elderly frail at hypo risk?

Simple audits of practice registers can find those at risk:

- Over 75 on SU and/or insulin with HbA1c
 <58
- All patients on SU and/or insulin with HbA1c <58
- All those on SU over 80 years age
- Greater than 1% Time Below Range on CGM

Instructions to complete the audit

Aim

The aim of the audit is to review the glycaemic targets of older people with type 2 diabetes.

Audit method

This will be a two-step completed audit to be carried out in primary care centres in the UK. The first data collection will be done between 1st May and 30th June 2016, and a follow-up data collection will be completed 6 months later to allow for appropriate interventions at the local or practice level to be put in place and take effect.

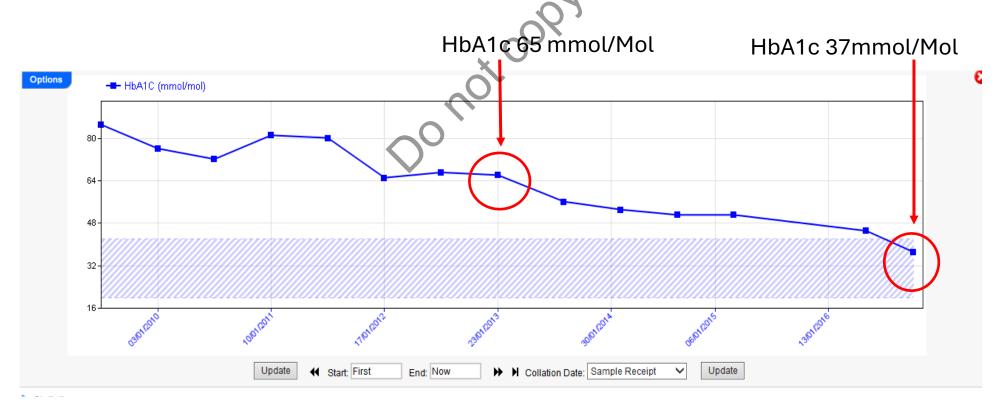
Criterion

People who are 70 years of age or above with type 2 diabetes must not have an HbA1c less than 53 mmol/mol (7%).

Standard

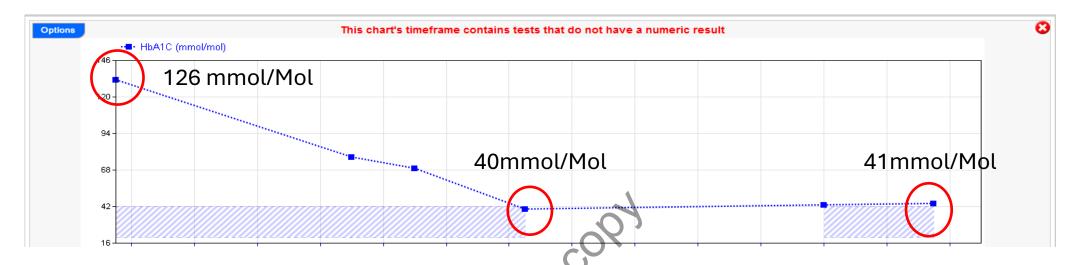
A 90% target is to be considered to allow for non-attendance, death, relocation of patients and difficult-to-reach patient groups.

N.B. Set a reminder on the practice's electronic calendar to repeat the audit 6 months later


Diabetes & Primary Care. 2016; 18/2: 18-20

Meet George - referred after multiple ambulance call outs

84 year old gentleman, living at home as carer for his wife In the last 6 months he has been investigated for ?TIA/CVE following falls and collapses at home - all investigations negative


He has lost 12kg over a two year period since his wife has had a stoke

Su Down's patient data. Patient authorised data shared for scientific/educational purposes

Care home patient

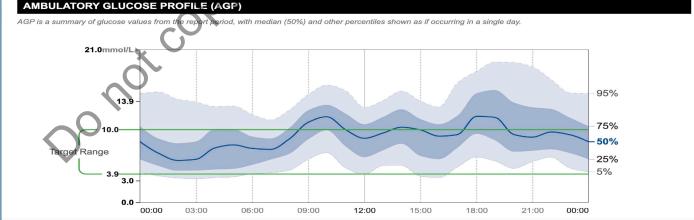
89 year old, resident of nursing home for 5 years.

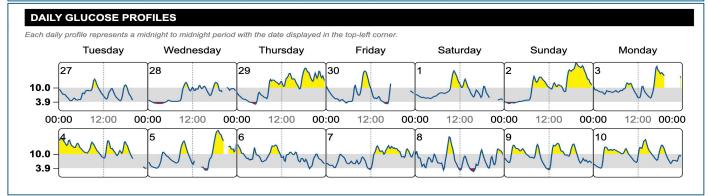
Medications on entering home: Metformin 1g twice daily Gliclazide 80mgs twice daily

Appetite is waning Increasingly frail & unsteady on feet in-fact they spend most of the day asleep!!

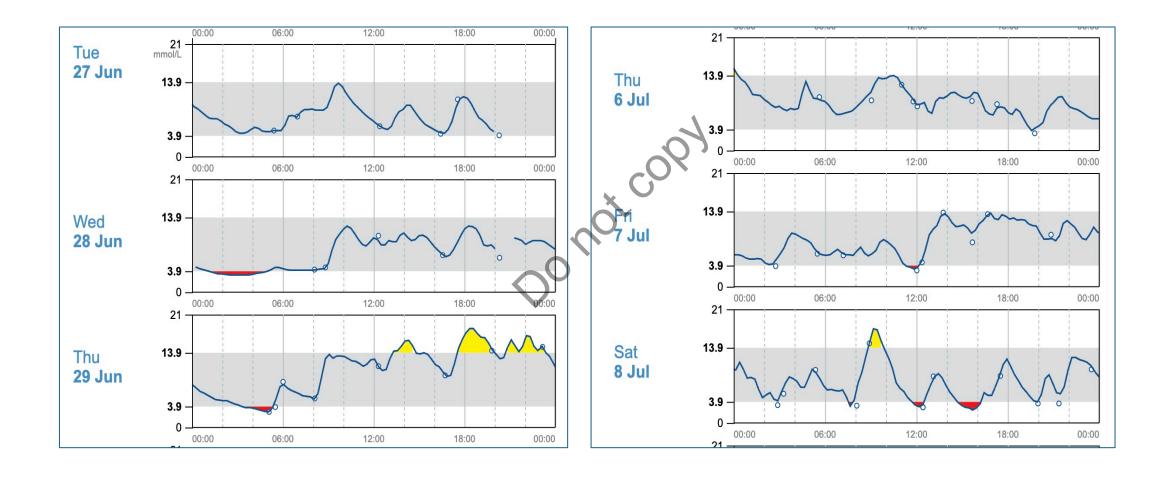
94 year old gentleman

Type 2 diabetes for 30 years


On multiple insulin injections:


Tresiba 42 units

Current HbA1c 67mmol/mol


Severe Frailty

Where would we start?

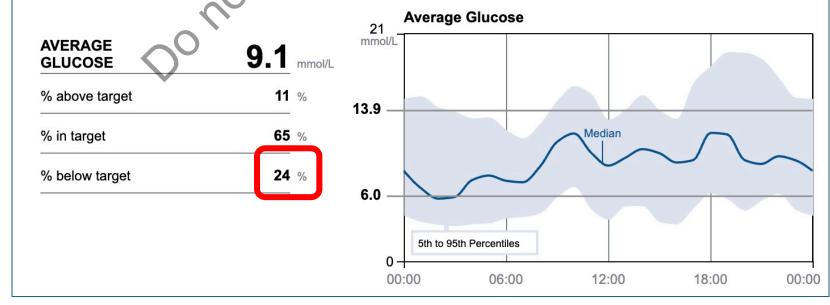
AGP Report

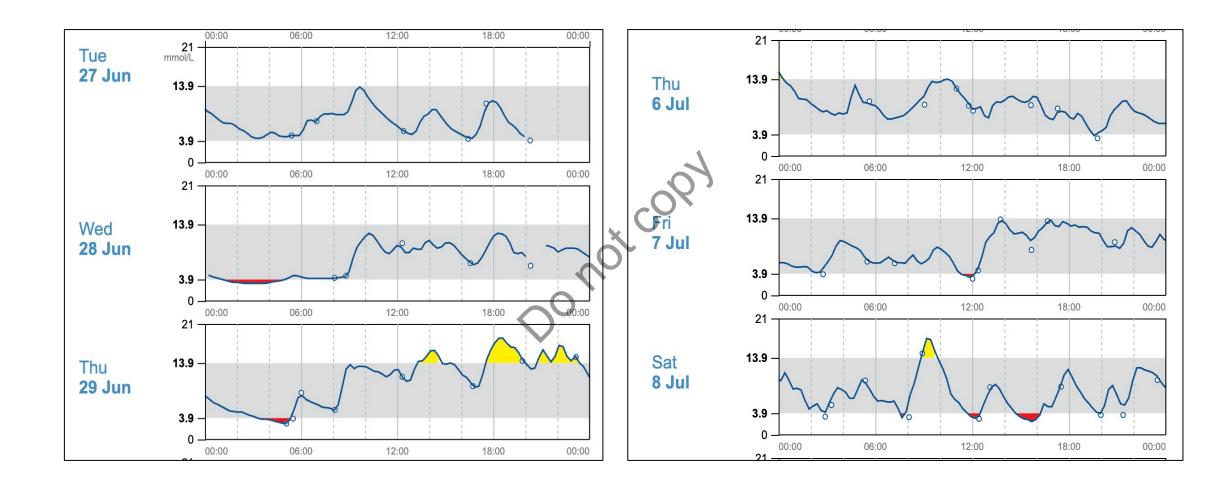
Glucose Pattern Insights

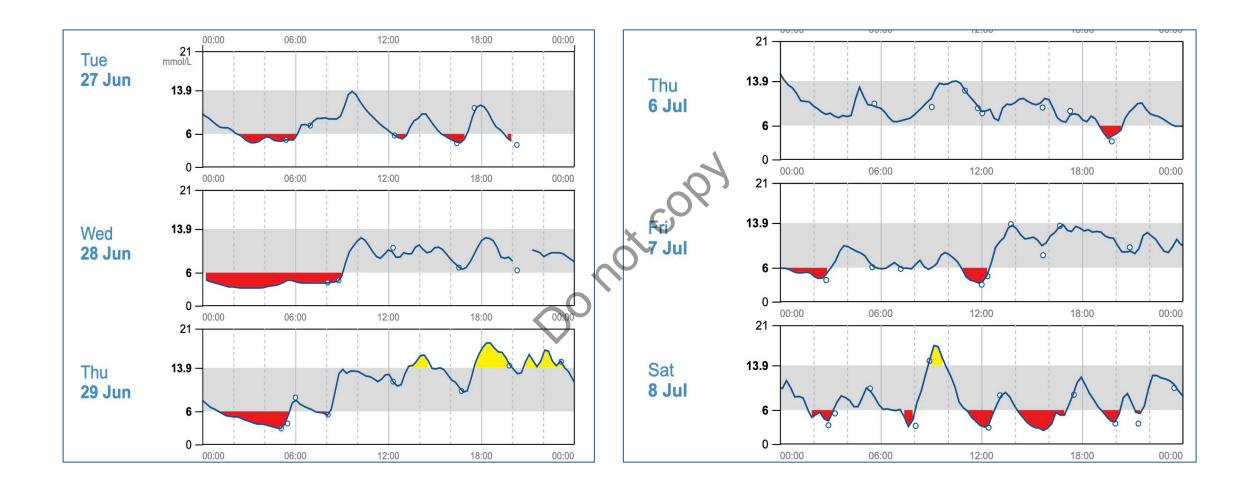
Monthly Summary

Daily Log

Snapshot


Mealtime Patterns


Weekly Summary


Device Details

Daily Patterns

by Clare Hambling, GP, West Norfolk

Take home messages

- 1. Recognise risks and assess for frailty
- 2. Seek triggers, especially significant life events
- 3. Avoid hypoglycaemia by de-escalating therapy

Thank you.

Do Not copy

pcdosociety.org

